Utilidade Pública: Quer ver 5 prêmios Nobel em ação?

Serviço de utilidade pública: o Instituto de Física da USP em São Carlos promove nos dias 28 de fevereiro e primeiro de março um simpósio em homenagem ao pesquisador Daniel Kleppner.

O prof. Kleppner nunca foi agraciado com um Prêmio Nobel, mas formou vários deles e contribuiu de forma significativa para o entendimento da matéria em escala atômica. Seu status é tão grande que nesta semana se reúnem em São Carlos, interior de São Paulo, 5 ganhadores do prêmio Nobel além diversos picas grossas “eternos candidatos”, gente que fez muito pela ciência e sempre tem seus nomes cogitados aos mais prestigiados prêmios. A seleção de nomes é impressionante. O progrma completo você vê aqui: http://cepof.ifsc.usp.br/symposium_kleppner/program.php .

Caso você tenha chance, compareça. Vai ter física do mais alto nível.

Se interessou, mas não pode comparecer? Siga na TV-USP, ao vivo: para quinta (28/02), o link é este aqui. Na sexta, dia 01/03, o link é este.

O Nobel de Física de 2012

O Nobel de Física de 2012 foi anunciado a quase um mês e nós ainda não falamos dele. 🙁

Pois hoje nos redimiremos dessa falha grotesca… 😀

O Nobel deste ano foi dividido por um francês e um americano, Serge Haroche e David Wineland, por, numa tradução livre, “desenvolvimento de métodos experimentais revolucionários que permitem medir e manipular sistemas quânticos individuais”.

E porque o que eles fizeram merece o Nobel, um dos mais (se não o mais) prestigiados prêmios em Física? A questão é razoavelmente simples de se responder, e vai ao encontro da razão pela qual muitos outros também ganharam esse mesmo prêmio: o que eles fizeram é muito, muito, muito difícil de se fazer. Mas, como diria Jack, vamos por partes.

Sistemas Quânticos Individuais

As leis fundamentais que regem o que quer que seja no Universo conhecido (não, iso não é um exagero) são as Leis da Física Quântica. Elas foram estabelecidas no início do século passado, com Planck, Einstein, Bohr, Schrödinger, Heisenberg, Dirac e vários outros. Dentre as muitas facetas da Física Quântica, algumas das mais fascinantes dizem respeito ao estado em que um sistema quântico pode existir. De fato, ao contrário do que vemos no nosso dia-a-dia, em que algo que é branco não é preto e vice-versa, um sistema quântico individual pode ser branco, preto ou uma mistura de ambos, nos mais variados tons de cinza que você imaginar. É a chamada superposição de estados. Mas você nunca vai realmente ver esse sistema em nenhum tom de cinza: quando você olhar pra ele, o sistema vai escolher se é branco ou preto, e isso destruirá o estado superposto do sistema. Você só é capaz de saber qual o tom de cinza, se medir o mesmíssimo sistema quântico (=cópias exatamente iguais) muitas vezes. Mas a cada vez, você o destrói. Complicado? Sim, especialmente porque não é o tipo de coisa que nos deparamos todo dia. Mas é esse tipo de comportamento que causa tanto frenesi nas propostas de computação quântica (o bit deixa de ser 1 ou 0, mas pode ser qualquer mistura entre os dois) e criptografia quântica (meça um estado uma vez e ele é destruído: a proteção perfeita contra bisbilhoteiros na comunicação de dados sigilosos).

Apesar de tão importantes, sistemas quânticos são muitíssimo frágeis. Coloque vários deles juntos e o que você tem é exatamente o que a gente conhece bem como “dia-a-dia”, a física clássica, Leis de Newton e companhia bela. Coloque eles em contato com o ambiente e pode dizer adeus à qualquer superposição de estados. É por essas e outras que sistemas quânticos individuais são dificílimos de observar e por isso mesmo, todos esse fenômenos exóticos e promissores ficam muitas vezes restritos a elucubrações teóricas e longe do mundo experimental.

O que os dois ganhadores do Nobel deste ano fizeram foi desenvolver formas de se estudar experimentalmente sistemas quânticos isolados, ultrapassando essas limitações fundamentais e abrindo a possibilidade de se estudar e entender os fenômenos quânticos.

Dois lados da mesma moeda

Bom, agora que a ideia está exposta, vejamos o que eles fizeram, individualmente.

Há uma simetria muito bonita nesses dois experimentos: enquanto Wineland estuda e manipula átomos aprisionados (íons, na verdade) usando para isso luz, Haroche estuda partículas de luz (fótons) aprisionadas numa cavidade, usando para isso átomos.

No caso de Wineland, ele resfria os íons, usando luz, de forma que o seu movimento vai para o menor grau possível (é impossível parar totalmente um sistema no contexto da Física Quâtica) e usando luz ele efetivamente coloca o íon em um estado superposto, exclusivamente quântico, e pode estudar esse sistema, completamente isolado do ambiente. De fato, esse tipo de estado é o que se convencionou chamar de estados do tipo “gato”, em homenagem ao famoso gato de Schrödinger.

No caso de Haroche, ele possui uma cavidade (dois espelhos, um de frente pro outro) super especial, resfriada, ultra-refletora e na qual ele coloca um ou alguns fótons que vivem dentro dessa cavidade um tempo longuíssimo (décimos de segundo) o que permite estudá-los. Para isso ele passa pela cavidade átomos especiais, chamados de átomos de Rydberg que são super-sensíveis. Quando os átomos saem da cavidade, após interagir com os fótons (sem destruí-los!!!) ele consegue medir, a partir do que aconteceu com os átomos, quantos fótons havia na cavidade. Uma das conseqüência mais interessantes do seu experimento é que ele consegue observar o “desaparecimento” dos fótons de dentro da cavidade em passos inteiros: o fóton desaparece e não apenas metade dele ou um terço, mas sempre um por vez.

Ambos os sistemas permitem fazer uma infinidade de experimentos interessantes nos fundamentos da Física Quântica e abrem possibilidades efetivas de se estudar experimentalmente as bases do que podem ser futuros sistemas aplicáveis, baseados nas leis fundamentais da Física Quântica.

Uma nota pessoal

Lá pelos idos de 2007 eu fui a uma conferência na Cidade do México. Lá estava Serge Haroche, os primeiros resultados que levaram ao Nobel deste ano tinham acabado de aparecer e ele era “a bola da vez” na maioria das conferêcias da área. Por coincidência, meu ex-orientador também estava lá, é amigo do Haroche e por isso tivemos a chance de ir jantar juntos: eu, dois colegas mexicanos, meu ex-orientador o Haroche e a esposa. [Há uma história ótima desse jantar que está perdida em algum rascunho pra virar um post aqui… vou ver se recupero.]

Não, o jantar não foram Tacos mexicanos… Mas que eles são apetitosos, isso são…

Ele então começou a contar algumas das dificuldades que nunca aparecem para o público que envolvem esse experimento que lhe deu o prêmio. Dentre muitas questões técnicas, como o fato de a cavidade ser mantida resfriada (a -270 oC) o tempo todo (fins de semana, Natal e feriados inclusos) ou de que eles nunca podem colocar a mão nela porque isso a destrói, um fato em especial me chamou a atenção.

Ele disse algo como: “eu sacrifiquei 3 a 4 gerações de estudantes, 12 anos de vai-e-vém, testes, resultados negativos, aprimoramentos, mais testes e pouquíssimos resultados efetivos.” Esse é o que eu chamo de “custo humano” de um projeto, muito mais difícil de mensurar que gastos com equipamentos, reagentes, viagens, etc. Os estudantes dessa fase, claro, tiveram suas carreiras comprometidas, doutorados e mais doutorados com pouquíssimo resultado efetivo. Um custo humano alto para um resultado científico igualmente alto. Infelizmente, é assim que funciona muitas vezes: muitíssimo esforço e sacrifício por um objetivo maior em algum momento do futuro. Para a ciência é super-válido. Mas e do ponto de vista humano? Valeu? Isso eu não sei responder.

Diários de Lindau, dia 4

Um dia de Luz, de espera por Higgs e de dicas valiosas para a sua pesquisa de todo dia.

Um dia que começou cedo demais. Com café-da-manhã num barco.

Isso e algo mais, no quarto dia dos Diários de Lindau.

>O Nobel de Física

>

Não!
Ele não ganhou o Nobel!
“Our whole universe was in a hot dense state, Then nearly fourteen billion years ago expansion started–Wait!” Não, a academia de ciências da Suécia não ficou maluca e começou a dar prêmios para séries de TV em vez de pesquisa séria! (se você não reconhece a música, clique no link). 

Acontece que a música tem muito a ver com o Prêmio Nobel de Física 2011. Saul Pearlmutter, Adam Riess, ambos americanos e Brian Schmidt, australiano, ganharam o Prêmio por revelarem, em 1998, não como a expansão do Universo começou, mas como ela continua hoje.

Explica-se: o Universo começou com uma explosão, certo? Então, mais que natural, no começo de tudo ele expandir e expandir e expandir. Evidências de que o Universo expandia-se datam do início do século passado. De fato, a descoberta de que ele expande-se é que leva à conclusão de que, voltando no tempo, ele deve ter começado com uma explosão. 

Passado o período de expansão, a expectativa natural dos cientistas era de quê o Universo desacelerasse sua expansão e tomasse um dos três rumos possíveis: continuasse a se expandir à uma velocidade constante, parasse completamente, tornando-se estático ou começasse a se contrair, fazendo o caminho de volta e acabando sua vida de volta ao ponto inicial. Ingenuamente, ninguém poderia imaginar que o Universo acelerasse sua expansão, já que para isso deveria haver uma fonte de energia que continuasse a empurrar e empurrar mais o Universo.

Pois os cientistas premiados neste ano descobriram exatamente o que não era esperado: o Universo continua a expandir-se e está acelerando. Para isso eles tiveram que medir estrelas, na verdade a explosão de estrelas, muito distantes e relacionar essas medidas com a sua velocidade e… surpresa até mesmo para eles: o Universo expande-se aceleradamente!

Aí você vai me perguntar o porquê. A explicação, até o momento, recai sobre a intrigante, desconhecida e inobservável “energia escura”, parceira, amiga-de-fé-irmã-camarada da matéria escura que, juntas, recebem a responsabilidade de carregar 95% da energia do Universo. Mas, apesar de tamanha responsabilidade e, aparentemente, efeitos observáveis, ninguém foi ainda capaz de ver, medir ou quantificar as duas. Muita água ainda vai rolar debaixo dessa ponte…

Para mais informações você pode ir direto ao website do Nobel, clicando aqui (em inglês).

>Nobel chegando… façam suas apostas!

>

E anotem no calendário pra não perder…

03/10 – Fisiologia e Medicina
04/10 – Física
05/10 – Química
07/10 – Paz
10/10 – Economia

??/?? – Literatura

Por aqui vamos tentar seguir a divulgação tão perto quanto possível!

Counter

wordpress stats

Counter 2

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM