Planetas que orbitam estrelas binárias


University of Bristol

Um planeta, duas estrelas: uma nova pesquisa mostra como se formam planetas circumbinários

 

Por dos Sóis em Tatooine (do Filme “Guerra nas Estrelas”)

WikiMedia Commons


O planeta natal de Luke Skywalker, Tatooine, teria se formado longe de sua posição mostrada no universo do filme “Guerra nas Estrelas”. É o que diz um novo estudo realizado pela Universidade de Bristol com suas contrapartidas deste universo real, observadas pelo Telescópio Espacial Kepler.

Tal como o Tatooine da ficção, o planeta Kepler-34(AB)b é um planeta circumbinário, ou seja, sua órbita é em torno de duas estrelas. Existem poucos ambientes mais extremos do que um sistema estelar binário para a formação de planetas. As poderosas perturbações gravitacionais, vindas das duas estrelas, sobre os blocos de construção de planetas pode levar a colisões destruidoras que esfarelam o material. Então, como se pode explicar a presença de planetas assim?

Em uma pesquisa publicada nesta semana em Astrophysical Journal Letters, a Dra Zoe Leinhardt e seus colegas da Escola de Física de Bristol realizaram simulações em computador dos estágios iniciais da formação de planetas em torno de estrelas binárias, empregando um modelo sofisticado que calcula os efeitos da gravidade e das colisões sobre e entre um milhão desses “blocos de construção” de planetas.

Eles descobriram que a maioria desses planetas tem que ter se formado muito mais longe do centro de gravidade do sistema estelar binário e depois migrado para sua posição atual.

A Dra Leinhardt declarou: “Nossas simulações mostram que o disco circumbinário é um ambiente hostil até mesmo para objetos grandes e de forte gravidade. Levando em conta os dados sobre colisões, assim como a taxa de crescimento físico de planetas, descobrimos que Kepler 34(AB)b teria tido enormes dificuldades para se formar onde hoje o encontramos”.

Com base nessas conclusões sobre Kepler-34, parece provável que todos os planetas circumbinários atualmente conhecidos também tenham passado por significativas migrações desde os locais onde se formaram – com a possível exceção de Kepler-47 (AB)c que fica mais distante das estrelas binárias do que qualquer outro planeta circumbinário.

Stefan Lines, principal autor do estudo, declarou: “Os planetas circumbinários capturaram a imaginação de muitos escritores e diretores de filmes de ficção científica – nossa pesquisa mostra o quão notáveis são esses planetas. Compreender mais sobre onde eles se formam, vai ajudar em futuras missões de busca por planetas semelhantes à Terra em sistemas estelares binários”.

###

Artigo

‘Forming circumbinary planets: N-body simulations of Kepler-34′ por S. Lines, Z. M. Leinhardt, S. Paardekooper, C. Baruteau e P. Thebault em Astrophysical Journal Letters

 

Matéria escura: até agora, nada!…

Photobucket

Um evento no ATLAS entre dois fótons. Os fótons são denotados pelos rastros de energia na cor verde.

                 Crédito da Imagem:  Experiência ATLAS © 2013 CERN | http://bit.ly/LegAIF

Original (em inglês) por Charles Q. Choi, Contribuidor do ISNS

(ISNS) — A matéria escura é presentemente um dos maiores mistérios do universo. Agora os cientistas revelam que o mais poderoso colisor de partículas do mundo não desencavou qualquer indício dessa forma hipotética de matéria, o que coloca novos limites para aquilo que ela pode ser.

A matéria escura é, hipoteticamente, uma substância invisível e enigmática que – se acredita – deve responder por quase cinco sextos de toda a matéria existente no cosmo. Os astrônomos começaram a suspeitar de sua existência na década de 1930, quando perceberam que o universo parecia possuir mais massa do que aquela das estrelas (e todo o resto de matéria observável). Por exemplo, a velocidade com que as estrelas orbitam o centro da Via Láctea é tão grande que elas já deveriam ter vencido a atração gravitacional do núcleo da galáxia e terem escapado para o vazio intergalático, mas alguma coisa as mantem no lugar, coisa esta que a maioria dos pesquisadores acredita ser a gravidade de um material até hoje não observado: a matéria escura.

Os cientistas já descartaram todas as formas conhecidas de matéria candidatas ao papel de matéria escura. Até o presente o consenso é que a matéria escura seja constituída de uma forma nova e invisível de partículas, as quais só interagiriam muito fracamente com a matéria conhecida.

A matéria escura não pode ser explicada por qualquer uma das partículas do Modelo Padrão da física de partículas, a melhor descrição atual para o mundo na escala subatômica. Desta forma, elas devem aparecer a partir de uma física que vá além do Modelo Padrão. Uma das possibilidades está na ideia conhecida como supersimetria, a qual sugere que todos os tipos de partículas conhecidos do Modelo Padrão têm uma contrapartida, ainda não detectada. Por exemplo, os elétrons teriam suas contrapartidas denominadas selétrons. Outra possibilidade é a existência de partículas conhecidas como áxions, originalmente propostas pelos físicos teóricos para solucionar um dos enigmas relacionados com a força nuclear forte, uma das quatro forças fundamentais do universo, que mantém coesos os prótons e nêutrons do núcleo atômico.

A maior parte das experiências que buscam a matéria escura envolve gigantescos detectores subterrâneos que procuram as raras colisões entre a matéria comum e partículas de matéria escura que passam através da Terra. No entanto, muitas das teorias sugerem que o maior colisor de partículas já construído, o Large Hadron Collider, pode gerar partículas de matéria escura. Embora essas partículas de matéria escura consigam escapar indetectadas pelos sensores da máquina, os cientistas do LHC em Genebra, Suíça, ou aqueles por todo o mundo que fazem a interpretação dos dados das colisões, poderiam inferir sua existência a partir do comportamento de outros produtos dessas colisões. Eles poderiam usar os dados das colisões para inferir detalhes desses pedacinhos de matéria escura, tais como suas massas e suas seções de choque — quer dizer, a probabilidade delas interagirem com outras partículas.

Buscas anteriores pela matéria escura no LHC procuravam por jatos individuais de partículas, formadas quando se estraçalha próton contra próton em níveis de energias sem precedentes. Durante a temporada de 2012 do LHC run, a colaboração ATLAS realizou experiências com colisões mais complexas que geravam não apenas um único jato, como também dois jatos estreitos adicionais.

Estas novas descobertas excluem enfaticamente vários potenciais candidatos a matéria escura e a pesquisa foi detalhada online na Physical Review Letters. Especificamente, o trabalho “coloca interessantes restrições nas tentativas de estender o Modelo Padrão de física de partículas de forma mínima para explicar a matéria escura”, segundo o físico de astropartículas Gianfranco Bertone da Universidade de Amsterdam (que não tomou parte na pesquisa).

Embora estas descobertas excluam alguns possíveis candidatos a matéria escura, “Eu não penso que isso seja realmente um grande problema para as teorias de matéria escura, no momento”, diz o físico de partículas Andreas Hoecker, vice coordenador da Experiência ATLAS no CERN. “A melhor  teoria que temos para a matéria escura, a supersimetria, não fica excluída com estes resultados”.

Os cientistas estão agora fazendo melhorias nos aceleradores do LHC. “Em meados de 2015, o acelerador vai ser novamente ligado e terá uma capacidade de quase o dobro da energia que antes”, diz Hoecker. Isto significa que as futuras experiências “poderiam procurar pela formação de partículas supersimétricas, tais como squarks, gluínos e neutralinos com massas muito maiores do que o permitido nos dados anteriores”. Não se espera que as experiências do LHC detectem áxions, já que estes teoricamente têm seções de choque muito baixa, além das capacidades do acelerador.

Além disto, por volta de 2022, os melhoramentos no LHC devem atingir uma luminosidade 10 vezes maior — ou seja, esmagar 10 vezes mais prótons contra um alvo, a cada seção. Isso pode gerar potenciais partículas de matéria escura em números bem maiores do que antes, talvez em número suficiente para sua detecção, a despeito da raridade de sua interação com outras partículas, acrescenta Hoecker.

Se o LHC não detectar coisa alguma, mesmo a essas energias maiores e maior luminosidade, “ainda fica muito difícil excluir totalmente os modelos de supersimetria, porém os cientistas provavelmente vão perder o interesse”, argumenta Bertone. “Possivelmente os pesquisadores vão ter que procurar em outro lugar”.


Charles Q. Choi é um escritor de ciências freelance com base em Nova York que já escreveu para The New York Times, Scientific American, Wired, Science, Nature, e várias outras publicações

Esta semana no EurekAlert

ESO

Descoberto o primeiro planeta orbitando uma “gêmea” do Sol em um aglomerado estelar

 IMAGEM: Concepção artística de um dos três novos exoplanetas descobertos no aglomerado estelar Messier 67.

Clique aqui para mais informações.

O Observatório Europeu do Sul (ESO), no Chile, anunciou a descoberta de três planetas no aglomerado estelar Messier 67, um dos quais orbita uma estrela “gêmea” de nosso Sol.

Embora já se saiba que exoplanetas são comuns, pouquíssimos deles foram encontrados em aglomerados estelares, o que é até um pouco estranho, se considerarmos que a maioria das estrelas nasce dentro desses aglomerados..

Anna Brucalassi (do Instituto Max Planck de Física Extraterrestre, na Alemanha), principal autora do estudo diz: “No aglomerado Messier 67, as estrelas são todas da mesma idade e composição de nosso Sol. Isso faz desse aglomerado um laboratório perfeito para estudar quantos planetas podem se formar em um ambiente tão populoso e se eles tendem a se formar em torno de estrelas mais ou menos massivas”.

A equipe empregou o instrumento HARPS (High Accuracy Radial velocity Planet Searcher = Buscador de Planetas [por meio da medição da] Velocidade Angular de Alta Precisão), montado no telescópio de 3,6m no Observatório La Silla, cujos resultados foram cotejados com vários outros dados de observatórios pelo mundo inteiro.

O aglomerado fica a cerca de 2500 anos-luz de distância, na direção da constelação de Câncer, e contem cerca de 500 estrelas. Muitas das estrelas do aglomerado são mais tênues do que aquelas onde usualmente se procura por exoplanetas, o que levou as capacidades do HARPS ao limite. Os três planetas descobertos – dois deles orbitando estrelas similares ao Sol e um que orbita uma mais massiva que já evoluiu para o estágio de gigante vermelha – os dois primeiros tem uma massa de cerca de um terço da massa de Júpiter e orbitam sua estrela-mãe em períodos de sete e cinco dias, respectivamente. O terceiro leva 122 dias para orbitar a estrela-mãe e é mais massivo do que Júpiter.

Links

Artigo que relata a pesquisa: ”Three planetary companions around M67 stars”, por A. Brucalassi et al., a ser publicado em Astronomy & Astrophysics
(pré-publicação online: - http://www.eso.org/public/archives/releases/sciencepapers/eso1402/eso1402a.pdf

Fotos do telescópio de 3,6m do ESO - http://www.eso.org/public/images/archive/search/?adv=&subject_name=3.6

 


California Institute of Technology

Himiko e a aurora do cosmo

 IMAGE: A composite color image of Himiko based on Hubble, Subaru, and Spitzer data. On the left is a Hubble image with the position of Himiko marked with a square. Top…Click here for more information.

Um dos mais fascinantes objetos descobertos pelo Telescópio Subaru – o telescópio de 8,2m operado pelo Observatório Astronômico Nacional do Japão, localizado no monte Mauna Kea no Hawaii – é uma “bolha espacial”, batizada de Himiko (uma lendária rainha do Japão antigo). Himiko apresenta três “bolhas” visíveis e foi identificada como uma enorme galáxia com um halo gasoso que cobre mais de 55.000 anos-luz. Himiko não só é enorme, como é muito distante e a imagem que vemos é de uma época cerca de 800 milhões de anos após o Big Bang, quando o universo tinha apenas 6% de seu tamanho atual e as estrelas e galáxias estavam apenas começando a se formar.

Em busca da resposta para como uma galáxia tão primeva poderia ter energia suficiente para aquecer uma nuvem de gás tão grande, uma equipe de astrofísicos da CalTech, da Universidade de Tóquio e do Centro Harvard-Smithsonian de Astrofísica combinou os resiltados de observações do Telescópio Espacial Hubble e do novo rádio-telescópio ALMA (Atacama Large Millimeter/submillimeter Array). E, junto com a resposta à pergunta inicial, obtiveram mais uma surpresa.

As imagens do Hubble – que detecta luz visível e utra-violeta – mostravam três aglomerados estelares que cobriam um espaço de 20.000 anos-luz cada; portanto, três galáxias típicas da época de Himiko, em processo de fusão, todas elas com intensa formação de estrelas que, somadas, equivalem a uma centena de massas solares por ano – o que é mais do que suficiente para explicar Himiko e seu halo gasoso. A tripla fusão de galáxias é, por si só, um evento raro.

A surpresa apareceu com os dados do ALMA. Embora Himiko estivesse brilhando nas faixas da luz visível e no ultra-violeta, nas faixas que o ALMA observa – submilimétrica e rádio-frequência – ela era quase apagada. Normalmente, regiões de intensa formação de estrelas criam nuvens compostas de carbono, oxigênio e silício (no jargão dos astrônomos, tudo mais massivo que hidrogênio e hélio é um “metal”) e essas nuvens quando aquecidas, reemitem a radiação ultra-violeta na faixa de rádio-frequência. Isso sugeria uma baixa “metalicidade” de Himiko.

A conclusão dos pesquisadores é que Himiko é tão antiga que é composta quase que exclusivamente por hidrogênio e hélio, elementos formados no próprio Big Bang. E antes de chegarem a esta conclusão, os cientistas tiveram que cuidadosamente descartar outras possibilidades, tais como a aparência de Himiko ser causada por um efeito tal como o de lente gravitacional ou por um gigantesco buraco negro no seu centro.

O artigo com os resultados é intitulado “An Intensely Star-Forming Galaxy at Z ~ 7 with Low Dust and Metal Content Revealed by Deep ALMA and HST Observations”, publicado na edição de 1/12/2013 do Astrophysical Journal

Cometa, asteróide… que raios é isso?!…


ESA/Hubble Information Centre

Quando um cometa não é um cometa?

Astrônomos do Hubble observam um esquisito asteroide com 6 caudas

 IMAGEM: Imagens do objeto espacial P/2013 P5 no cinturão de asteroides.

Clique aqui para mais informações.

Os astrônomos que trabalham com o Telescópio Espacial Hubble (cooperação NASA/ESA) observaram um objeto ímpar e intrigante no cinturão de asteroides que se parece com um esguicho giratório de jardim ou uma peteca de badminton. Embora este objeto siga uma órbita de asteroide, se parece com um cometa e está ejetando caudas de poeira para o espaço.

Asteroides normais são vistos como pequenos pontos luminosos. Mas este asteroide, designado como P/2013 P5, tem seis caudas semelhantes à de um cometa se irradiando dele como os raios de uma roda de bicicleta. Ele foi detectado pela primeira vez em agosto deste ano como um objeto particularmente nebuloso pelos astrônomos do Telescópio Pan-STARRS 1 no Hawaii [1].

Como jamais coisa semelhante tinha sido observada, os astrônomos estão coçando suas cabeças na tentativa de encontrar uma explicação adequada para sua aparência misteriosa.

As múltiplas caudas foram encontradas nas imagens do Hubble tiradas em 10 de setembro de 2013. Quando o Hubble voltou ao asteroide em 23 de setembro, sua aparência estava totalmente diferente. Parecia que toda sua estrutura tinha sido girada.

“Nós ficamos literalmente embasbacados com o que vimos”, diz o principal investigador David Jewitt da Universidade da Califórnia em Los Angeles. “O que é mais estranho ainda é que a estrutura de suas caudas mudaram dramaticamente em apenas 13 dias enquanto ele arrotava poeira. Isto também nos pegou de surpresa. É difícil acreditar que estamos olhando para um asteroide”.

Uma explicação para a aparência estranha é que a rotação do asteroide tenha aumentado ao ponto que sua superfície está se destroçando, emitindo poeira em erupções episódicas que só começaram na última primavera [NT: primavera do Hemisfério Norte]. A equipe descartou a possibilidade de um impacto de outro asteroide porque, neste caso, uma grande bola de poeira teria sido emitida para o espaço de uma só vez, enquanto que o P5 tem emitido poeira de maneira intermitente ao longo de, pelo menos, 5 meses. [2].

Uma modelagem cuidadosamente realizada pela membro da equipe Jessica Agarwal do Instituto Max Planck para Pesquisa do Sistema Solar em Lindau, Alemanha, mostrou que as caudas podem ter sido formadas por uma série de eventos de ejeção impulsiva de poeira [3]. A pressão da radiação solar expele esses “borrões” de poeira. “Dados nossas observações e modelagens, inferimos que o P/2013 P5 pode estar perdendo poeira por girar em alta velocidade”, argumenta Agarwal. “Então o mesmo Sol arrasta esta poeira na forma das diversas caudas que vemos”.

O asteroide pode ter sido posto a girar a uma alta velocidade, na medida em que a pressão da luz solar exerceu um torque em seu corpo. Se a rotação aumentar o bastante, diz Jewitt, a fraca gravidade do asteroide não será mais capaz de mantê-lo coeso. A poeira pode cair em avalanche na direção do equador, onde pode esmigalhar tudo e ejetar, eventualmente formando uma longa cauda no espaço. Até agora, somente uma pequena parte da massa – algo entre 100 e 1000 toneladas de poeira – se perderam. O asteroide é milhares de vezes mais massivo, com um raio de quase 240 metros.

Observações subsequentes podem mostrar se a poeria sai do asteroide pelo plano equatorial, o que seria um indício muito forte de uma disrupção rotacional. Os astrônomos também tentarão medir a real taxa de rotação do asteroide.

A interpretação de Jewitt implica em que a disrupção rotacional pode ser um fenômeno comum no cinturão de asteroides; pode mesmo ser a principal maneira pela qual os pequenos asteroides “morrem” [4]. “Na astronomia, quando você encontra algo, normalmente vai encontrar muitos mais”, lembra Jewitt. “Este é um objeto muito interessante para nós e quase que com certeza o primeiro de muitos outros”.

O artigo da equipe de Jewitt será publicado na edição online de 7 de novembro de The Astrophysical Journal Letters.

 

###

Notas

[1] O cometa foi descoberto por Micheli et al. em 27 de agosto de 2013. Ele foi localizado por observações feitas em 18 de agosto de 2013. A descoberta foi anunciada em uma Circular Eletrônica de Minor Planet.

[2] Agarwal calculou que o primeiro evento de ejeção ocorreu em 15 de abril e o último em 4 de setembro de 2013. Outras erupções aconteceram em 18 de julho, 24 de julho, 8 de agosto e 26 de agosto de 2013.

[3] Uma opção menos provável é que a emissão resulte da sublimação de gelo. O gelo pode sobreviver dentro do cinturão de asteroides, muito embora apenas se estiver nas bordas ou enterrado bem dentro de um asteroide suficientemente grande, de forma a estar protegido, No entanto o P5 é feito de rochas metamórficas, o que o torna incapaz de manter o gelo da mesma forma que os cometas o fazem. Isto, juntamente com a órbita de P5 e seu tamanho muito pequeno, tornam muito improvável que a perda de massa seja por sublimação do gelo.

[4] Esta não é a primeira vez que o Hubble observou um asteroide estranho. Em 2010, o Hubble observou um estranho asteroide em forma de X (heic1016 - http://www.spacetelescope.org/news/heic1016/). No entanto, diferentemente do P/2013 P5, acredita-se que este outro se tenha formado por uma colisão. Mais tarde naquele mesmo ano os astrônomos observaram o asteroide (596) Scheila, um objeto com uma cauda, cercada por uma nuvem de poeira em forma de “C” (opo1113a -http://www.spacetelescope.org/images/opo1113a/). Igualmente, acredita-se que esse asteroide seja o resultado de uma colisão entre Scheila e outro corpo muito menor – foi apenas a segunda vez que um tal evento foi encontrado.

 

O Telescópio Espacial Hubble  é um projeto de uma cooperação internacional da ESA e da NASA.

A equipe internacional de astrônomos do estudo do Hubble consiste de D. Jewitt (UCLA, EUA), J. Agarwal (Instituto Max Planck para Pesquisa do Sistema Solar, Alemanha), H. Weaver (Laboratório de Física Aplicada da Universidade Johns Hopkins, EUA), M. Mutchler (STScI, EUA) e S. Larson (Universidade de Arizona, EUA). O artigo. intitulado “The Extraordinary Multi-Tailed Main-Belt Comet P/2013 P5″, será publicado em The Astrophysical Journal Letters.

Links

O intenso magnetismo de Smith


National Radio Astronomy Observatory

Um “campo de força” magnético protegerá a gigante Nuvem de Smith durante a (próxima) colisão com a Via Láctea

 IMAGEM: Concepção artística da Nuvem de Smith em seu mergulho em direção ao disco da Via Láctea.

Clique aqui para mais informações.

Pode ser que a destruição não seja o que aguarda a Nuvem de Smith¹, uma gigantesca nuvem de gás intergalático (principalmente hidrogênio) que está em rota de colisão com a Via Láctea. Os astrônomos que a examinaram usando o conjunto de antenas de base muito grande (Very Large Array = VLA) Karl G. Jansky da Fundação Nacional de Ciências dos EUA (NSF) e o Telescópio Robert C. Byrd em Green Bank (GBT), descobriram um campo magnético bem lá dentro da nuvem, o que pode servir de “escudo” para ela quando mergulhar no disco de nossa galáxia.

Esta descoberta pode ajudar a explicar como as assim chamadas nuvens de alta velocidade (high velocity clouds = HVCs) conseguem ficar quase intactas quando se fundem com os discos de galáxias, onde vão fornecer o combustível novo para a formação de uma nova geração de estrelas.

Atualmente, a Nuvem de Smith está mergulhando em direção da Via Láctea a mais de 250 km/seg e o impacto é previsto para aproximadamente 30 milhões de anos². Quando isto acontecer, isto vai criar uma espetacular torrente de criação de estrelas, acreditam os astrônomos. Mas antes disso, ela tem que sobreviver à travessia do halo, ou atmosfera, de gás quente ionizado que circunda a Via Láctea.

“A atmosfera superior, de milhões de graus, da galáxia deveria destruir essas nuvens de hidrogênio antes que elas conseguissem chegar ao disco, onde a maioria das estrelas se forma”, diz Alex Hill, um astrônomo da Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) e autor principal de um artigo publicado no Astrophysical Journal. “Novas observações mostram uma dessas nuvens em pleno processo de ruptura, no entanto um campo magnético protetor serve de escudo para a nuvem e pode ajudá-la a sobreviver a seu mergulho”.

Muitas centenas de HVCs enxameiam em torno de nossa galáxia, mas suas órbitas raramente correspondem à rotação da Via Láctea. Isto leva os astrônomos a considerarem que as HVCs são as sobras do material de construção das galáxias, ou que são os esparsos escombros remanescentes de encontros entre galáxias, há bilhões de anos.

Embora tenham grandes massas, o gás que constitui as HVCs é muito tênue e simulações em computadores predizem que elas não têm a rusticidade necessária para sobreviver ao mergulho através do halo, até o disco da Via Láctea.

“Sempre tivemos problemas para compreender como as HVCs conseguem chegar ao disco galático”, diz Hill. “Há um bom motivo para crer que campos magnéticos possam impedir que eles “queimem” no halo, tal como um meteorito queima na atmosfera terrestre”.

Apesar de termos o melhor indício da existência de um campo magnético dentro de uma HVC, a origem da Nuvem de Smith continua a ser um mistério. “O campo que observamos agora, é grande demais para ter existido no mesmo estado quando a nuvem se formou”, argumenta Hill. “O campo provavelmente foi ampliado pelo movimento da nuvem através do halo”.

Pesquisas anteriores indicam que a Nuvem de Smith já sobreviveu pelo menos uma vez à travessia do disco de nossa galáxia e – a cerca de 8.000 anos-luz do disco – está apenas começando agora o processo de re-entrada.

“A Nuvem de Smith é ímpar entre as nuvens de alta velocidade porque ela interage claramente e se funde com a Via Láctea”, observou Felix J. Lockman, astrônomo do National Radio Astronomy Observatory (NRAO) em Green Bank, West Virginia. “Sua aparência semelhante a um cometa mostra que ela já está sentindo a influência da Via Láctea”.

Uma vez que a Nuvem de Smith parece não ter estrela alguma, o único modo de observá-la é com rádio-telescópios extremamente sensíveis, tais como o GBT, capaz de detectar a fraca emissão do hidrogênio neutro. Se fosse visível ao olho nu, a Nuvem de Smith cobriria uma área do céu do tamanho da constelação de Orion.

Quando a Nuvem de Smith eventualmente se fundir com a Via Láctea, poderá produzir um brilhante anel de estrelas, semelhante a outro relativamente próximo de nosso Sol, conhecido como o Cinturão de Gould.

“Nossa galáxia está em um ambiente incrivelmente dinâmico”, conclui Hill, “e a forma com a qual ela interage com esse ambiente é o que determina se estrelas como o Sol vão continuar se formando”.

 

###
Notas do Tradutor:
1 – A Nuvem de Smith leva o nome de solteira da astrônoma (Gail Bieger) que a descobriu em 1963, quando era estudante de astronomia na Universidade Leiden na Holanda.
2 – A página Smith’s Cloud da WikiPedia (em inglês) aponta uma velocidade mais modesta de 73 ± 26 km/seg e uma previsão de impacto de 27 milhões de anos.

O planeta das impossibilidades possíveis


Harvard-Smithsonian Center for Astrophysics

Planeta misterioso intriga os astrônomos

 IMAGEM: Concepção artística de Kepler-78b, o planeta que não devia existir.

Clique aqui para mais informações.

Kepler-78b é um planeta que nem deveria existir. Este mundo de lava escaldante gira em torno de sua estrela a cada oito horas e meia a uma distância de menos de dois milhões de quilômetros – uma das órbitas mais apertadas que se conhece. Segundo as teorias correntes sobre a formação de planetas ,ele nem poderia se ter formado, tão perto de sua estrela, nem poderia ter se movido para lá.

“Esse planeta é um completo mistério”, diz o astrônomo David Latham do Centro Harvard-Smithsonian de Astrofísica (CfA, na sigla em inglês). “Não sabemos como ele se formou ou como ele chegou aonde está hoje. O que sabemos é que não vai durar para sempre”.

“Kepler-78b vai acabar sendo engolido pela estrela muito em breve, em termos astronômicos”, concorda o astrônomo do CfA Dimitar Sasselov.

Kepler-78b não é somente um mundo misterioso; ele é o primeiro planeta do tamanho da Terra, com uma densidade igual à da Terra, conhecido. Kepler-78b é cerca de 20% maior que a Terra, com um diâmetro de 15.000 km e pesa quase o dobro. Disso resulta que ele tem uma densidade semelhante à da Terra, o que, por sua vez, sugere que ele tem uma composição semelhante à da Terra: rochas e ferro.

 IMAGEM: Ilustração comparativa da Terra com o planeta Kepler-78b.

Clique aqui para mais informações.

A órbita apertada de Kepler-78b apresenta mais um desafio aos teóricos. Quando esse sistema planetário estava em formação, a jovem estrela era maior do que é agora. Ou seja, a atual órbita de Kepler-78b ficaria dentro da estrela mais gorda.

“Ele não pode ter se formado nesta posição porque não dá para se formar um planeta dentro de uma estrela. Ele não pode ter se formado mais distante e migrado para dentro, porque, se fosse assim, ele teria acabado mergulhando direto para dentro da estrela. Este planeta é um enigma”, explica Sasselov.

Segundo Latham, Kepler-78b é membro de uma nova classe de planetas recentemente identificados pela espaçonave Kepler da NASA. Esses planetas recentemente encontrados orbitam suas estrela em períodos menores que 12 horas. Eles também são pequenos, com um tamanho próximo do da Terra. Kepler-78b é o primeiro desta classe a ter sua massa medida.

“Kepler-78b é o próprio exemplo dessa nova classe de planetas”, observa Latham.

 IMAGEM: Diagrama ilustrativo da órbita apertada de Kepler-78b em torno de sua estrela.

Clique aqui para mais informações.

A equipe estudou o Kepler-78b usando um espectrografo de alta precisão recentemente posto em funcionamento, o HARPS-North, no Observatório de Roque de los Muchachos em La Palma. Eles coordenaram seu trabalho com outra equipe independente que usou o espectrógrafo HIRES no Observatório Keck. As medições efetuadas por ambas as equipes foram concordantes, o que aumenta a confiabilidade dos resultados.

Kepler-78b é um mundo condenado. As marés gravitacionais vão puxá-lo para mais perto ainda da estrela. Eventualmente, ele vai chegar tão perto que a gravidade da estrela vai rompê-lo em pedaços. Os teóricos predizem que Kepler-78b vai desaparecer nos próximos 3 bilhões de anos.

Curiosamente, nosso sistema solar pode ter tido um planeta como Kepler-78b. Mas, se teve, esse planeta foi destruído há muito tempo e não deixou vestígios para os astrônomos de hoje.

Kepler-78b orbita um estrela semelhante ao Sol, tipo G, localizada a 400 anos-luz da Terra na direção da constelação do Cisne (Cygnus).

 

###

 

Nota do tradutor: o título deste post é um trocadilho com o título do livro de Louis Pauwels e Jacques Bergier, “O planeta das possibilidades impossíveis”, mas nada tem a ver com o assim chamado “realismo fantástico” .

Por que a bateria do seu laptop viciou…


ETH Zurich

Por que as baterias de íon de lítio falham

 IMAGEM: Partículas de um eletrodo de óxido de estanho, passando por mudanças estruturais durante o carregamento (1 a 3) e descarregamento (3 e 4).

Clique aqui para mais informações.

As baterias de íon de lítio estão presentes em nossos telefones celulares, laptops e câmeras digitais. Existem poucos dispositivos eletrônicos portáteis que não dependam dessas fontes de energia. Atualmente, os eletrodos das baterias contém materiais ativos conhecidos como compostos de intercalação. Esses materiais armazenam carga em suas estruturas químicas sem sofrerem uma mudança estrutural substancial. Isto torna essas baterias comparativamente duráveis e seguras. No entanto, esses materiais de intercalação têm uma limitação: a pequena densidade de energia, a quantidade de energia que pode ser armazenada por unidade de volume e massa.

Na procura poe baterias com mais densidade de energia, os cientistas realizaram experiências por mais de 20 anos com materiais capazes de fazerem e desfazerem liga com o lítio repetitivamente. As experiências em escala de laboratório mostraram que baterias feitas com esses materiais possuem densidades de energia muitas vezes superiores às dos materiais de intercalação; no entanto, esses materiais que fazem ligas ainda não são muito empregados pela indústria porque sua duração é limitada. Martin Ebner, estudante de Ph.D. no Laboratório de Nanoeletrônica do Departamento de Tecnologia da Informação e Engenharia Elétrica (D-ITET) explica: “sua capacidade tipicamente se atenua após um par de ciclos carga-descarga”. Isto é atribuído a uma enorme expansão – de até três vezes – do material do eletrodo durante o carregamento. Durante o descarregamento, o material se contrai novamente, mas não volta a seu estado original. As partículas do eletrodo se separam, a estrutura do eletrodo se desintegra e os fragmentos perdem o contato com o restante da célula.

Observando as baterias durante o funcionamento com raios-x

Para compreender melhor a complexa degradação eletroquímica e mecânica do eletrodo, bem como obter novos dados para o desenvolvimento de baterias melhores, Martin Ebner e a Professora Vanessa Wood do ETH, chefe do Laboratório de Nanoeletrônica do D-ITET, perceberam a necessidade de estudar o funcionamento de um eletrodo de bateria com um processo não invasivo. Dessa forma, eles se voltarm para um instrumento de imageamento desenvolvido pelo Professor Marco Stampanoni do ETH. O Professsor Stampanoni, é catedrático no Instituto de Engenharia Biomédica do D-ITET e opera o feixe de raios-x para tomografia microscópica da Fonte de Luz Suíça, a instalação de síncrotron no Instituto Paul Scherrer. A radiação síncrotron de raios-x, de espectro puro e intensa, permite a rápida aquisição de imagens de raios-x de alta definição que podem ser montadas por computação em filmes tridimensionais.

Os pesquisadores observaram o interior da bateria enquanto ela carregava e descarregava ao longo de 15 horas. Com isso conseguiram montar filmes inéditos que registraram os mecanismos de degradação que ocorrem nas baterias e quantificaram os processos que acontecem com cada uma das milhares de partículas dos eletrodos. Os resultados deste estudo serão publicados na Science; uma versão pré-impressão está disponível online na Science Express.

Mudanças estruturais irreversíveis

Os dados mostram que as partículas de óxido de estanho (SnO) se expandem durante o carregamento devido ao influxo de íons de lítio, o que causa um aumento no volume das partículas. Os cientistas demonstram que a litificação acontece em um processo de fora para dentro, que progride da superfície da partícula até seu núcleo. O material que sofre esta reação, se expande linearmente com a carga armazenada. As imagens de raios-x mostram que o carregamento destrói a estrutura da partícula de modo irreversível, formando rachaduras dentro das partículas. “A formação de rachaduras não é aleatória”, enfatiza Ebner. As rachaduras crescem em locais onde a retícula do cristal contém defeitos pré-existentes. Durante o descarregamento, o volume das partículas diminui; entretanto, o material não volta a seu estado original; portanto, o processo não é completamente reversível.

A mudança de volume das partículas individuais acarreta a expansão de todo o eletrodo, de 50 micrômetros até 120 micrômetros. Porém, durante o descarregamento, o eletrodo só se contrai até 80 micrômetros. Esta deformação permanente do eletrodo demonstra que o polímero agregante que une o eletrodo, ainda não está otimizado para materiais de grande expansão volumétrica. Isto é algo crítico para o desempenho de uma bateria, porque a deformação do agregante faz com que as partículas fiquem desconectadas do eletrodo e  bateria perca capacidade.

Além de demonstrar que a microscopia tomográfica por raios-x permite a observação de mudanças morfológicas nas partículas e eletrodos, os pesquisadores demonstraram que esta técnica pode também ser empregada para a obtenção de informações químicas quantitativas e com resolução espacial. Por exemplo, os pesquisadores analisaram a composição química por todo o eletrodo, para procurar por diferenças na dinâmica de litificação ao nível das partículas individuais e comparar isto ao comportamento médio das partículas. Esta abordagem é essencial para a compreensão da influência do tamanho e formato das partículas e a homogeneidade do eletrodo sobre o desempenho da bateria.

Tais vislumbres do funcionamento da bateria não seriam possíveis sem o dispositivo avançado de tomografia com raios-x da Fonte de Luz Suíça. “A visualização das baterias durante o funcionamento era praticamente impossível até os recentes avanços na tomografia por raios-x. Graças às instalações de qualidade mundialmente reconhecidas, desenvolvidas pelo Professor Stampanoni e sua equipe, fomos capazes de observar a bateria funcionando”, acrescenta entusiasticamente Wood.

Alternativas para os materiais cristalinos

Os pesquisadores escolheram o óxido de estanho como material modelo porque ele passa por uma série de transformações complexas, também presentes em outros materiais, o que permite uma compreensão mais profunda do comportamento de vários materiais para baterias. Essas observações fornecem a base para o desenvolvimento de novos materiais para eletrodos e estruturas de eletrodos que sejam tolerantes a expansão volumétrica. Para o Prof. Wood, os resultados de seu trabalho indicam os benefícios do uso de materiais amorfos ou com nano-estrutura, em lugar dos cristalinos. “Na busca por novos materiais, se deve ter em mente que eles só têm interesse para a indústria se puderem ser produzidos em largas quantidades e a baixo custo. Mesmo assim, os materiais amorfos e de nano-estrutura oferecem um campo grande o suficiente para inovações”, enfatiza Wood.

 

###

 

Referencia

Ebner M, Marone F, Stampanoni M, Wood V. Visualization and quantification of electrochemical and mechanical degradation in Lithium ion batteries. Science Express, publicado online em 17 de outubro de 2013.

Novidades acerca das Supernovas

Queen’s University Belfast

Cientistas da Queen’s University lançam novas luzes sobre a morte de estrelas

Estudo sobre supernovas será publicado na Nature em 17 de outubro.

Os astrônomos da Queen’s University lançaram novas luzes sobre as mais raras e mais brilhantes explosões de estrelas jamais descobertas no universo.

Credit: ESO/L.Calçada

Crédito: ESO/L.Calçada

A pesquisa, será publicada na edição de 17 de outubro da Nature – uma das publicações científicas mais prestigiosas do mundo. Ela propõe que as supernovas – estrelas explodidas – mais luminosas são energizadas por estrelas de nêutrons pequenas e incrivelmente densas, com campos magnéticos gigantescos que giram a centenas de vezes por segundo.

Os cientistas do Centro de Pesquisas Astrofísicas da Queen’s observaram duas supernovas super-luminosas – duas das estrelas explodidas mais luminosas do universo – por mais de um ano. Ao contrário das teorias correntes, que sugerem que as supernovas mais brilhantes são causadas pela explosão de estrelas super-massivas, as descobertas sugerem que sua origem pode ser melhor explicada por um tipo de explosão dentro do núcleo da estrela que cria uma estrela magnética menor, porém extremamente densa e que gira muito rápido.

Matt Nicholl, um estudante pesquisador do Centro de Pesquisas de Astrofísica na Escola de Matemática e Física da Queen’s, é o autor principal do artigo. Segundo ele: “As supernovas são vários bilhões de vezes mais brilhantes do que o Sol e, na verdade, são tão brilhantes que os astrônomos amadores as buscam regularmente nas galáxias próximas. Há décadas que se sabe que o calor e a luz dessas supernovas vêm de poderosas ondas de choque e material radioativo”.

“Porém foram recentemente encontradas algumas supernovas muito inusitadas que são brilhantes demais para serem explicadas desse jeito. Elas são centenas de vezes mais brilhantes do que aquelas encontradas ao longo dos últimos 50 anos e a origem de suas propriedades extremadas é algo muito misterioso”.

“Alguns físicos teóricos predisseram que estes tipos de explosão se originavam das maiores estrelas do universo se destruindo de maneira quase igual a uma bomba termonuclear. No entanto, os dados que obtivemos não corroboram essa teoria”.

“Na explosão de uma supernova, as camadas externas da estrela são violentamente ejetadas, enquanto seu núcleo colapsa para formam uma estrela de nêutrons extremamente densa – que pesa o mesmo que o Sol, mas com um diâmetro de poucas dezenas de quilômetros. Acreditamos que, em um pequeno número de casos, a estrela de nêutrons tenha um campo magnético muito forte e que gire incrivelmente rápido – cerca de 300 vezes por segundo. Na medida em que a rotação abranda, ela pode transferir energia da rotação [NT: leia-se: momento angular] para toda a supernova, através do magnetismo, tornando-a muito mais brilhante do que o normal. Os dados que obtivemos concordam com essa previsão quase que exatamente”.

Os astrônomos da Queen’s lideraram uma equipe internacional de cientistas neste estudo, empregando alguns dos telescópios mais poderosos do mundo. Grande parte dos dados coletados o foi com o Pan-STARRS – o Telescópio de Pesquisa Panorâmica e Sistema Rápido de Resposta. Com base no Monte Haleakala no Hawaii, o Pan-STARRS tem a maior câmera digital do mundo e pode cobrir uma área com 40 vezes o tamanho da Lua cheia em uma única foto.

Este estudo é um dos projetos financiados por um fundo de € 2,3 milhões do Conselho de Pesquisas Europeu, administrado pelo Professor Stephen Smartt, Diretor do Centro de Astrofísica da Queen’s, a partir de 2012, para condução de pesquisas internacionais sobre as primeiras supernovas do universo.

O Professor Smartt declarou: “Estas são supernovas realmente especiais. Já que elas são tão brilhantes, podemos usá-las como luzes de navegação no universo muito distante. Como a luz viaja pelo espaço a uma velocidade fixa, à medida em que olhamos mais distante, vemos imagens de um passado constantemente mais distante no tempo. Ao compreendermos os processos que levam a essas estonteantes explosões, podemos sondar o universo tal como ele era logo após seu nascimento. Nossa meta é achar essas supernovas do universo primitivo e observá-las a produzir os primeiros elementos químicos criados no universo”.

Link para o artigo completo na Nature: www.nature.com/nature/journal/v502/n7471/full/nature12569.html

Grafeno já era!… Conheça o Carbyno


Rice University

Nota do tradutor: o nome “Carbyne” em inglês pode ter vários significados. No caso específico, “carbyne” se refere ao (teoricamente possível) poliacetileno (-C≡C-)n e eu chamei de “carbyno”, fazendo um aportuguesamento do termo em inglês, com “y” e tudo.

O tradutor também deseja enfatizar que observou que este “press-release” é exageradamente bombástico, ao descrever uma substância que, apesar de ser teoricamente possível, ainda não foi sintetizada em quantidades suficientes para testar na prática as qualidades apregoadas, e a “American Chemical Society” é chegada a apregoar “progressos” que acabam não dando em nada…

O novo campeão dos Carbonos

Os teóricos da Universidade Rice calculam que as cadeias de carbyno, com um átomo de espessura, pode ser o material mais forte que pode existir

 IMAGEM: Concepção artística da aparência de uma cadeia de carbyno.

Clique aqui para mais informações.

HOUSTON – (9 de outubro de 2013) – O Carbyno será o mais forte de toda uma nova classe de materiais microscópicos, quando e se alguém puder sintetizá-lo em grande escala.

Se conseguirem, vão descobrir que as nano-hastes ou nano-cordas têm uma pletora de propriedades notáveis e úteis, tal como descreve um novo artigo do físico teórico Boris Yakobson, da Universidade Rice, e seu grupo. O artigo será publicado nesta semana na publicação Nano da American Chemical Society.

O Carbyno é uma cadeia de átomos de carbono ligada por ligações, ou duplas, ou, alternadamente, simples e triplas. Isso o faz um material realmente unidimensional, diferentemente das folhas de grafeno, com um único átomo de espessura, que têm um topo e um fundo, ou nano-tubos ocos que têm um lado de dentro e outro de fora.

De acordo com o retrato traçado pelos cálculos de Yakobson e seu grupo:

  • A resistência à tração – a capacidade de suportar o esticamento – supera “a de qualquer outro material conhecido” e é o dobro da do grafeno. (Os cientistas já calcularam que seria necessário um elefante, se equilibrando em cima de um lápis, para perfurar uma folha de grafeno)
  • Seu módulo de elasticidade (Young) é o dobro do grafeno e dos nano-tubos de carbono, e cerca de três vezes o do diamante.
  • Esticar o carbyno tão pouco como 10%, altera sua banda proibida (electronic band gap) significativamente.
  • Se for dotado de alças moleculares em suas extremidades, também pode ser torcido para alterar sua banda proibida. Com uma rotação de 90 graus, ele se torna um semi-condutor magnético.
  • Cadeias de carbyno podem receber moléculas colaterais, o que pode torná-las capazes de armazenar energia.
  • O material é estável a temperatura ambiente, resistindo bem à reticulação com cadeias próximas.

Isto é um notável conjunto de qualidades para uma simples cadeia de átomos de carono, como diz Yakobson.

“Se pode encará-lo como uma fita de grafeno extremamente fina, reduzida a um único átomo, ou um nano-tubo extremamente fino”, diz Yakobson. Poderia ser útil para sistemas nano-mecânicos, em dispositivos spintrônicos, como sensores, como materiais leves e fortes para aplicações mecânicas, ou para armazenagem de energia.

“Quaisquer que sejam as aplicações”, prossegue ele, “em termos acadêmicos é muito instigante conhecer a mais forte molécula possível”.

Com base nos cálculos, ele declara que o carbyno pode ser o mais alto estado de energia possível para o carbono estável. “Usualmente nos preocupamos em encontrar o “estado fundamental“, a configuração de átomos com a menor energia possível”, explica Yakobson. “No caso do carbono, este seria a grafite, seguida pelo diamante, nano-tubos e, por fim, fulerenos. Porém, ninguém se pergunta sobre a mais alta configuração de energia. Acreditamos que esta possa sê-lo, uma estrutura estável com a maior energia possível”.

As teorias sobre o carbyno começaram a aparecer no século XIX e a primeira tentativa de sintetizá-lo foi feita na URSS em 1960. Desde então, o carbyno tem sido observado em grafite comprimida, foi detectado em poeira interestelar e foi criado em pequenas quantidades pelos cientistas experimentais.

“Eu sempre me interessei pela estabilidade de fios ou qualquer outra coisa extremamente finos, e o quão fina uma haste se pode fazer com uma determinada substância química”, diz Yakobson. “Nós publicamos um artigo, há 10 anos, sobre silício, no qual explorávamos o que acontece com um nano-fio de silício na medida em que fica mais fino. Para mim, isto era apenas parte da mesma pergunta”.

Os pesquisadores da Rice, sob a liderança do estudante de pós-graduação Mingjie Liu e o pesquisador pós-doutorado Vasilii Artyukhov, tinham conhecimento de vários artigos que descreviam uma ou outra propriedade do carbyno. Eles se dispuseram a detalhar o  carbyno com modelos de computação, usando regras de lógica de primeira ordem pra estabelecer as interações energéticas dos átomos, segundo Artyukhov.

 IMAGEM: Nano-cordas ou nano-hastes de carbyno, uma cadeia de átomos de carbono, seriam mais fortes do que o carbeno ou o diamante (se puderem ser manufaturadas).

Clique aqui para mais informações.

“Nossa intenção era reunir tudo, construir um quadro mecânico completo do carbyno como material”, disse Artyukhov. “O fato dele ter sido observado nos diz que ele ao menos é estável sob tensão, senão simplesmente teria sido destruído”.

Yakobson diz que os pesquisadores ficaram surpresos em encontrar uma fixa proibida no carbyno tão sensível à torção. “Ele vai ser útil como um sensor para torção ou campos magnéticos, se conseguirmos um meio de fixá-lo a alguma coisa que o faça se enrolar”, diz ele. “Nós não estávamos procurando especificamente por isto; foi algo que surgiu como um produto colateral”.

“Isso é o que é bom em estudar as coisas cuidadosamente”, acrescenta Artyukhov.

Outra descoberta de grande interesse é a barreira de energia que impede os átomos em cadeias de carbono adjacentes de colapsarem umas sobre as outras. “Quando se fala de material teórico, é sempre bom ser cuidadoso para verificar se ele reage com ele próprio”, diz Artyukhov. “Isto nunca tinha sido realmente investigado para o carbyno”.

A literatura parecia indicar que o carbyno “não era estável e se desfaria em grafite ou fuligem”, diz ele.

Ao contrário, os pesquisadores descobriram que os átomos de carbono em cadeias separadas poderiam sobrepujar a barreira em um ponto, mas a rigidez das hastes iria impedir que elas se juntassem em outro local, ao menos em temperatura ambiente. “Iriam ficar parecidas com asas de borboleta”, disse Artyukhov.

“Novelos poderiam ficar grudados, mas não colapsariam inteiramente”, acrescenta Yakobson. “Isso poderia criar uma rede, altamente porosa e randômica, que poderia ser boa para adsorção”. Artyukhov diz que a área específica do carbyno é cerca de cinco vezes a do grafeno.

[Nota do tradutor: Alerta para hype escandaloso!] Quando o artigo da equipe ficou disponível neste verão nos arXiv, os noticiários científicos e mesmo alguns noticiários populares ficaram tão entusiasmados com os cálculos que começaram a especular sobre o artigo e suas implicações, antes que a equipe o submetesse à revisão por pares. Agora que o artigo inteiro está pronto para a publicação, os pesquisadores dizem que vão levar suas investigações em novas direções.

Eles estão examinando mais rigorosamente a condutividade do carbyno e cogitando também sobre outros elementos. “Conversamos sobre examinarmos diferentes elementos da tabela periódica para ver se alguns deles podem formar cadeias unidimensionais”, disse Yakobson.

 

###

 

O estudante de pós-graduação da Rice, Fangbo Xu e o ex-pesquisador pós-doutorado, Hoonkyung Lee, agora professor da Universidade Konkuk na Coréia do Sul, são os co-autores do artigo.

Extrato do artigo em http://pubs.acs.org/doi/abs/10.1021/nn404177r

O prêmio Nobel de Física de 2013

Photobucket

Foto de Englert: Pnicolet via Wikimedia Commons | Foto de Higgs: G-M Greuel via Wikimedia Commons | Imagem composta por Lalena Lancaster

Comitê do Nobel também menciona os experimentos do Large Hadron Collider como confirmação da partícula de Higgs.

8 de outubro de 2013
Por: 

Ben P. Stein, Diretor do Inside Science

(ISNS) – O Prêmio Nobel de Física de 2013 foi concedido ao cientista belga François Englert e ao cientista britânico Peter W. Higgs “pela descoberta teórica de um mecanismo que contribui para nossa compreensão da origem da massa das partículas subatômicas e que foi recentemente confirmado pela descoberta da partícula fundamental prevista, pelos experimentos ATLAS e CMS do Large Hadron Collider do CERN”.

Em 1964, Englert, em conjunto com um colega já falecido, Robert Brout, e Higgs publicaram, independentemente, artigos que davam uma explicação sobre como algumas partículas subatômicas, tais como elétrons e quarks, adquirem massa. Segundo seu trabalho teórico, essas partículas intergiriam com um campo invisível, existente no universo, agora conhecido como o Mecanismo de Higgs, para adquirirem suas massas. Em 4 de julho de 2012, dois grupos de pesquisas no Large Hadron Collider (LHC), no laboratório do CERN de física de partículas na Europa anunciaram a detecção de uma partícula que, como mais tarde foi confirmado, vem desse campo invisível.

“Ambos [os teóricos] fizeram uma contribuição para a explicação da origem da massa e estas contribuições não podem ser individualizadas. Afinal, o que eles fizeram foi essencial para o Modelo Padrão da Física de Partículas”, declarou Olga Botner, da Universidade de Uppsala na Suécia, ao anunciar o prêmio.

“Não surpresa alguma”, comento Drew Baden, um físico da Universidade de Maryland, em College Park, “e é uma história realmente interessante”.

Há cinquenta anos, os físicos enfrentavam um enorme problema. Eles sabiam que o universo era composto por partículas fundamentais, tais como elétrons, prótons e nêutrons, que serviam como peças para a montagem da matéria. Estas partículas eram governadas por forças, tais como o eletromagnetismo, que as punham em movimento. Entretanto, este Modelo Padrão da física de partículas tinha sérias limitações. Ele não podia explicar porque alguns objetos — tais como os elétrons — tinham massa e outros, tais como os fótons, não tinham. Pelo Modelo Padrão de 1963, nada teria massa e zuniria pelo universo afora na velocidade da luz. Não seria possível a formação de átomos e moléculas e as estrelas, planetas, galáxias e as pessoas não poderiam existir.

É aí que entra em cena um grupo de teóricos — físicos que pretendem descrever a natureza através da matemática — para resolver o problema de porque certas partículas no universo têm massa, enquanto outras não.

A resposta veio com a percepção de que o universo está imerso em campos. Por exemplo, o campo eletromagnético permeia o espaço e faz com que objetos com carga positiva sejam atraídos por outros com carga negativa. As forças eletromagnéticas são exercidas entre os objetos através da troca de fótons.

Na década de 1960, vários teóricos descobriram independentemente que tinham a solução para o enigma das massas para o Modelo Padrão. A solução que eles apresentaram envolvia a existência de outro campo invisível, agora conhecido como Campo de Higgs. Algumas partículas, tais como os fótons, não são afetadas por ele enquanto o atravessam. Outras, tais como os elétrons, experimentam uma resistência a seu movimento, ou inércia, o que lhes confere massa.

“Até a descoberta do Higgs, não havia um fiapo de indício experimental”, comenta Baden, um físico da equipe do CMS no LHC. Em lugar disso, segundo ele, o conceito todo veio de uma solução matemática para um problema, que mostrava como as partículas poderiam adquirir massa.

Vários teóricos descobriram a solução de Higgs. Primeiro, Englert e seu colega Brout, publicaram um artigo que previa esse campo invisível. Peter Higgs, de maneira independente, publicou um artigo que previa que uma partícula, que veio a ser denominada Bóson de Higgs, poderia ser emitida pelo campo, tal como os fótons são emitidos pelo campo eletromagnético. Outro grupo de teóricos, Gerald Guralnik, C. Richard Hagen e Tom Kibble, porteriormente publicaram independentemente um artigo que predizia o mesmo mecanismo.

Baden disse que a premiação simultânea para Englert e Higgs “uma solução de compromisso muito bonita”, assim como o reconhecimento dos experimentais do LHC que detectaram a partícula. Englert e Higgs “puseram a bola em movimento” quanto à ideia da existência de um campo invisível que permeia o espaço.

Ao longo de décadas, o Higgs permaneceu como a peça que faltava no Modelo Padrão. Ele explciava porque algumas partículas fundamentais tinham massa. No entanto, ele era incrivelmente difícil de detectar. Segundo as previsões, o próprio Higgs tinha massa. E ele era muito pesado, muito mais pesado do que qualquer outra partícula fundamental até então detectada. Para extrair uma partícula do campo de Higgs é necessária uma enorme quantidade de energia.

Somente depois da construção pelo CERN do LHC que os físicos puderam extrair de modo confiável as partículas de Higgs desse campo invisível. O LHC começou a funcionar em 2008.

O LHC acelera feixes de 500 trilhões de prótons — as partículas positivamente carregadas do núcleo dos átomos — até 99,99999 % da velocidade da luz, ou seja, uma energia de 4 teraeletron-volts, ou TeV. É o equivalente à energia de um trem em  disparada, concentrada em um raio de prótons subatômicos. O LHC esmaga dois desses feixes, um de encontro ao outro, para criar jorros de partículas. A famosa equação de Einstein, E=mc², diz que a energia pode ser convertida em massa e vice versa. A partir da pura energia dessa colisão, podem emergir novas partículas, totalmente diferentes dos prótons iniciais.

Em 4 de julho de 2012, os físicos das duas colaborações experimentais do LHC, ATLAS e CMS, anunciaram que tinham confirmado a existência de uma partícula parecida com o previsto Higgs. Sua massa aproximada era de 125 gigaelectron volts, ou GeV, muito maior do que qualquer outra partícula fundamental e cerca de 100 vezes mais pesada do que um próton. Durante o último ano, os cientistas confirmaram que  partículas observada era mesmo o Higgs. Dados anteriores, obtidos pelo acelerador Tevatron do Laboratório Nacional Fermi, também confirmavam alguns indícios da existência desta partícula.

Porém, com a confirmação do Higgs, os enigmas do universo estão longe de estarem solucionados. Embora o Higgs possa ser a última peça principal do Modelo Padrão, os físicos entendem que o Modelo Padrão ainda está incompleto. Por exemplo, ele só descreve três das quatro forças fundamentais do universo e deixa de fora a gravidade.

“Em minha opinião, o principal e mais fundamental problema ainda não resolvido, apesar de alguns progressos, é o problema da gravidade quântica, a quantização da gravidade”, declarou Englert, em uma coletiva de imprensa, imediatamente após o anúncio do Prêmio Nobel de 2013.

Englert também lembrou as questões da supersimetria, matéria escura e energia escura, mistérios que ainda estão por resolver.

O Modelo Padrão somente descreve a matéria comum do universo, o que agora se supõe compreender apenas um quinto da matéria existente no universo. Ele não prevê a matéria escura invisível, nem a energia escura, que foram o objeto do Prêmio Nobel de Física em 2011.

Peter Higgs não foi entrevistado quando do anúncio do Nobel por estar em gozo de férias.

Então, os teóricos e experimentalistas continuam com um monte de questões para responder. As soluções para essas questões provavelmente serão objetos dos próximos Prêmios Nobel de Física.


Ben P. Stein, diretor do Inside Science, vem cobrindo a física como escritor de ciências e editor desde 1991.

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM