Gotículas líquidas dão pistas sobre comportamentos quânticos

Photobucket
Traduzido de: Liquid Droplets Reveal Clues To Quantum Behavior

Uma gota de fluido, ao atingir a superfície de um banho fluido, produz ondas que, por sua vez, impelem a gotícula ao longo do banho. Crédito da imagem: Dan Harris (licença de uso da Creative Commons)

Uma experiência que pode revelar os detalhes de pequena escala do universo.

Original publicado em: 2 de agosto de 2013
Por: Charles Q. Choi, Contribudor do ISNS 
(ISNS) — Depois que uma gotícula cai em um recipiente de fluido sob vibração, o que ela faz a seguir pode ajudar a resolver mistérios fundamentais da física quântica. Agora os cientistas mapearam o comportamento dessas gotículas em maior detalhe do que jamais conseguido e descobriram que elas podem se mover de novos jeitos.
Se um recipiente de fluido vibrar com pouca intensidade, a gotícula que cai nele simplesmente desaparece no líquido. No entanto, se a vibração tiver a vibração exata, a gotícula pode quicar no mesmo lugar ou mesmo percorrer a superfície do fluido. Ela pode até se comportar de modo ainda mais bizarro. Dependendo de como o líquido for agitado, ela pode mudar regularmente o tamanho de seus saltos, ou ziguezaguear de maneira imprevisível.
Cada vez mais os cientistas descobrem que o comportamento desconcertante dessas gotículas peripatéticas imita estranhos efeitos que só foram observados anteriormente em nível microscópico no domínio quântico, onde os objetos podem aparentemente existir em dois ou mais lugares ao mesmo tempo, ou girar em duas direções opostas simultaneamente.
Por exemplo, uma das famosas descobertas da física quântica é que as partículas, que seria de se esperar que agissem como bolas de bilhar, podem se comportar como ondas que se poderia observar em um laguinho. Se uma onda que viaja na superfície da água, encontrar uma barreira com duas fendas, é possível que, do outro lado da barreira, surjam duas ondas, criando uma série de ondulações conhecidas como um padrão de interferência. Elétrons e outras partículas quânticas que atinjam uma tela com dois orifícios nela, vão gerar padrões de interferência semelhantes, se comportando essencialmente tanto como uma partícula, como uma onda em diferentes partes de seu caminho.
Acontece que as ondulações geradas por uma gotícula, quando elas passam por fendas em barreiras submersas em um recipiente de fluido sob vibração, recriam o mesmo padrão de ondas. “De uma certa forma ela se comporta como uma partícula, de outra forma, como uma onda”, declara o pesquisador John Bush, um professor de matemática aplicada e dinâmica de fluidos do Instituto de Tecnologia de Massachusetts (Massachusetts Institute of Technology = MIT).
O jeito com o qual essas gotículas se comportam corresponde a uma tentativa, por muito tempo negligenciada, para explicar o comportamento ondulatório das partículas quânticas. Nos primórdios da física quântica, o físico francês Louis de Broglie sugeriu que as partículas quânticas eram transportadas por ondas-guia de algum tipo, tal como uma boia o é pela maré. Mas como não foi descoberto qualquer exemplo físico para a assim chamada teoria da onda-guia, ela foi quase inteiramente abandonada — até o aparecimento dessas gotículas saltitantes e fluidos sob vibração, descobertos em 2005 pelo físico francês Yves Couder, o primeiro exemplo real da teoria da onda-guia, desde sua proposição, há mais de 80 anos, segundo Bush.
Estas recentes descobertas podem reacender a questão sobre se existe um fundamento secreto para a física quântica. Sistemas de ondas-guia são caóticos, assim como os sistemas meteorológicos – eles são sensíveis a perturbações de uma forma que pode fazê-los se comportarem de maneira probabilística, igual às partículas quânticas.
“Se os sistemas de ondas-guia puder reproduzir os mistérios da mecânica quântica com uma dinâmica observável, existe a possibilidade de que eles possam fornecer pistas sobre como a dinâmica pode funcionar na escala quântica”, declara Bush.
Agora Bush e seus colegas realizaram a análise mais detalhada até hoje de como as gotículas quicam e caminham em fluidos vibrantes. Eles também descobriram, inesperadamente, um novo tipo exótico de gotícula caminhante: aquelas com um passo variável, onde as velocidades com as quais quicam para cima e para baixo.
Os cientistas exploraram como gotículas de diferentes tamanhos e viscosidades – seu nível de resistência ao fluxo – se comportavam em fluido vibrado em frequências variantes. O dispositivo experimental compreendia um prato circular, cheio de óleo de silicone, agitado na vertical por um vibrador industrial. As gotículas, com tamanhos variando de 400 a 1000 mícrons — ou seja, de 4 a 10 vezes o tamanho médio de um cabelo humano — foram criadas mergulhando-se rapidamente uma agulha no fluido. E câmeras de alta velocidade ajudaram a medir o tamanho das gotículas e registrar seu comportamento.
“As experiências eram extremamente delicadas, sensíveis a vibrações de origem externa”, comenta Bush. “Nós temíamos os efeitos da passagem dos trens do metrô”.
Ainda é algo incerto o que as descobertas dos pesquisadores podem revelar, embora os resultados estejam encorpando os modelos teóricos que Bush e seus colegas desenvolveram para descrever o comportamento dessas gotículas. Seus trabalhos podem melhorar as chances de descobrir análogos líquidos ao domínio quântico, segundo Bush. As descobertas de suas recentes pesquisas foram detalhadas em um trio de artigos a serem publicados em agosto, dois deles em Journal of Fluid Mechanics  e o terceiro em Physics of Fluids.
“Agora dispomos de todo um novo enfoque para o problema de descrever o domínio quântico”, declarou o físico teórico Antony Valentini da Universidade Clemson na Carolina do Sul, que não participou deste estudo.
“Esses modelos analógicos certamente vão sugerir novas ideias teóricas, assim como nos inspirar a repensar as ideias originais de de Broglie dos anos 1920. Os modelos provavelmente também vão sugerir novas maneiras de resolver a mecânica quântica, assim como o quanto a teoria quântica pode ser modificada”.

Charles Q. Choi é um escritor de ciências freelance da Cidade de Nova York, que já escreveu para o The New York Times, Scientific American, Wired, Science, Nature  e várias outras publicações.

Os Cinturões de Van Allen são aceleradores de partículas

25 de julho de 2013
Por: Karen C. Fox
NASA’s Goddard Space Flight Center, Greenbelt, Md.

 

Particle acceleration comes from the Van Allen radiation belts.
Observações recentes realizadas pelas gêmeas Sondas Van Allen da NASA mostram que as partículas dentro dos cinturões de radiação que envolvem a Terra, são aceleradas por uma espécie de “chute” de energia local, o que ajuda a explicar por que essas partículas chegam a velocidades de até 99% da velocidade da luz.
Crédito da Imagem: G. Reeves/M. Henderson

 

Os cientistas descobriram um enorme acelerador de partículas no coração de uma das regiões mais inóspitas do espaço próximo da Terra, uma região povoada por partículas carregadas e super-energéticas, chamadas de Cinturões (de Radiação) de Van Allen. Os cientistas sabiam que algo no espaço acelerava as partículas dentro dos cinturões de radiação acima de 99% da velocidade da luz, mas eles não sabiam o que esse “algo” era. Novos resultados das Sondas Van Allen da NASA mostram que a energia aceleradora vem de dentro dos próprios cinturões. As partículas em seu interior parecem levar um chute de energia, o que as acelera cada vez mais, de forma muito parecida a empurrões perfeitamente sincronizados em um balanço em movimento.

A descoberta de que as partículas são aceleradas por uma fonte local de energia é comparável à descoberta de que os furacões nascem de uma fonte de energia local, tal como uma região de águas oceânicas aquecidas. No caso dos cinturões, a fonte é uma região de intensas ondas eletromagnéticas que tira energia de outras partículas localizadas na mesma região. Conhecer a localização da acleração irá ajudar os cientistas a melhorar as previsões do tempo espacial, porque mudanças nos cinturões de radiação podem trazer riscos para os satélites em órbita próxima da Terra. Os resultados foram publicados hoje na Science.

De forma a que os cientistas pudessem compreender melhor o que se passa dentro dos cinturões, as Sondas Van Allen foram projetadas para voar direto por dentro dessa área turbulenta do espaço. Quando missão foi lançada em agosto de 2012, ela tinha como objetivos principais compreender como as partículas dentro dos cinturões eram aceleradas até essas energias ultra-altas e como essas partículas, algumas vezes, logravam escapar. Ao estabelecer que essa aceleração ultra-intensa vem desses “chutes” locais de energia – e não de um processo mais generalizado – os cientistas conseguiram responder definitivamente a uma dessas importantes questões pela primeira vez.

“Este é um dos resultados mais esperados e entusiasmantes das Sondas Van Allen”, declara David Sibeck, cientista do projeto das Sondas Van Allen no Centro de Voo Espacial Goddard da NASA em Greenbelt, Maryland. “É o principal motivo pelo qual a missão foi lançada”.

Os cinturões de radiação foram descobertos com o lançamento dos primeiros satélites americanos que chegaram com sucesso ao espaço, Explorer I e III. Rapidamente se percebeu que os cinturões eram um dos ambientes mais perigosos que uma espaçonave poderia enfrentar. A maior parte das órbitas de satélites é escolhida para se encolher por baixo dos cinturões de radiação, ou para circular por fora deles, ou ainda, como no caso dos satélites do GPS, operar entre os dois cinturões. Quando os cinturões oscilam, por causa do “mau tempo” espacial, eles podem abranger essas espaçonaves, expondo-as a perigosas radiações. De fato, a maior parte dos defeitos permanentes nas espaçonaves foi causada pela radiação. Com um aviso suficiente, a tecnologia pode ser protegida das piores consequências, mas este aviso só pode ser emitido se realmente conhecermos a dinâmica do que acontece dentro dos misteriosos cinturões.

“Até a década de 1990, nós pensávamos que os cinturões de Van Allen eram bem-comportados e mudavam lentamente”, esclarece Geoff Reeves, o primeiro autor do artigo e pesquisador dos cinturões de radiação no Laboratório Nacional de Los Alamos, Novo México. “A cada nova medição realizada, entretanto, percebemos o quão rápido e de maneira imprevisível os cinturões mudavam. Eles basicamente jamais estão em equilíbrio, mas em um estado de contínua mudança”.

De fato, os cientistas perceberam que os cinturões nem sequer mudam de maneira consistente em resposta ao que parecem ser estímulos similares. Algumas tempestades solares faziam os cinturões se intensificarem; outras os tornavam esgotados; e algumas pareciam nem ter qualquer efeito. Tais efeitos disparatados a eventos aparentemente similares sugeriam que esta região era muito mais misteriosa do que se pensava. Para compreender – e, eventualmente, ser capaz de predizer – quais tempestades solares intensificariam os cinturões de radiação, os cientistas precisavam saber de onde vinha a energia que acelerava as partículas.

As Sondas gêmeas Van Allen foram projetadas para distinguir duas possibilidades genéricas sobre os processos que aceleravam as partículas a tais impressionantes velocidades: aceleração radial ou aceleração local. No caso da aceleração radial, as partículas são transportadas perpendicularmente aos campos magnéticos que envolvem a Terra, das áreas de menor intensidade magnética, longes da Terra, até áreas de intensa força magnética, próximas da Terra. As leis da física ditam que as velocidades das partículas neste cenário aumentará com a intensificação dos campos magnéticos. Assim, as velocidades das partículas deveriam aumentar ao se aproximarem da Terra, de forma muito parecida com a que uma pedra que rola morro abaixo aumenta de velocidade simplesmente devido à gravidade. No caso da aceleração local, a teoria afirma que as partículas recebam energia de uma fonte local, de forma mais parecida com a qual as águas aquecidas dos oceanos alimentam furacões acima delas.

 

Graphic of Earth's radiation belts and the orbit of the Van Allen Probes.
Duas faixas de partículas que envolvem a Terra, chamados de cinturões de radiação, são um dos maiores aceleradores de partículas naturais do Sistema Solar, capaz de imprimir às partículas velocidades da ordem de 99% da velocidade da luz. As Sondas Van Allen, lançadas em agosto de 2012, descobriram agora os mecanismos por trás dessa aceleração.
Crédito da Imagem: NASA/Goddard /Scientific Visualization Studio

 

Para poder distinguir entre essas duas possibilidades, as Sondas Van Allen consistem de duas espaçonaves. Com dois conjuntos de observações, os cientistas podem medir as partículas e as fontes de energia em duas regiões do espaço simultaneamente, o que é crucial para distinguir entre causas locais e as que têm origem remota. Igualmente, cada espaçonave é equipada com sensores para medir a energia e a posição das partículas e determinar o ângulo de ataque – ou seja, o ângulo do movimento com respeito aos campos magnéticos da Terra. Tudo isso iria variar de maneiras diferentes, dependendo das forças que agem sobre elas, o que auxiliou os cientistas a distinguir entre as teorias.

Equipados com esses dados, Reeves e sua equipe observaram uma rápida elevação da energia de elétrons de alta energia em 9 de outubro de 2012. Se a aceleração desses elétrons estivesse ocorrendo por causa do transporte radial, os efeitos medidos começariam longe da Terra e se movendo para dentro, devido ao próprio formato e a própria intensidade desses campos envoltórios. Em tal cenário, as partículas que se movessem através dos campos magnéticos pulariam naturalmente de um par o seguinte, em cascata, arrebanhando energia durante o caminho – similar ao cenário da pedra que rola morro abaixo.

No entanto as observações não mostraram uma intensidade que se formasse mais afastada da Terra e gradualmente se movesse para dentro. Em lugar disto, elas mostraram um aumento de energia que começava bem no meio dos cinturões de radiação e gradualmente se espalhava tanto para dentro, como para fora, o que implicava em uma fonte de aceleração local.

“Neste caso em particular, toda aceleração ocorreu em um período de cerca de 12 hors”, relata Reeves. “Com as medições anteriores, um satélite só seria capaz de voar através de um tal evento uma vez e não teria a chance de testemunhar as mudanças realmente acontecendo. Com as Sondas Van Allen tínhamos dois satélites e, assim, pudemos observar como as coisas se modificam e onde essas mudanças começam”.

Os cientistas acreditam que estes novos resultados levarão a melhores previsões sobre a complexa cadeia de eventos que intensificam os cinturões de radiação a níveis que podem danificar satélites. Muito embora o trabalho demonstre que a energia local vem de ondas eletromagnéticas que percorrem os cinturões, não se sabe exatamente quais dessas ondas podem ser a causa. Durante o conjunto de observações descrito no artigo, as Sondas Van Allen observaram um tipo específico de onda, chamadas ondas corais, ao mesmo tempo que as partículas eram aceleradas, porém serão necessários mais estudos até que se estabeleça uma relação de causa e efeito.

“Este artigo ajuda a diferenciar entre duas soluções genéricas”, ressalva Sibeck. “Ele demonstra que a aceleração pode ocorrer localmente. Agora, os cientistas que estudam ondas e campos magnéticos vão se debruçar sobre o problema e descobrir que tipo de onda forneceu o empuxo”.

Felizmente, esta tarefa também será auxiliada pelas Sondas Van Allen Probes, que também são cuidadosamente projetadas para medir e distinguir entre os diversos tipos de ondas eletromagnéticas.

“Quando os cientistas projetaram a missão e os instrumentos das sondas, eles contemplaram as dúvidas científicas e disseram: ‘Esta é uma grande oportunidade para fazer algumas descobertas fundamentais sobre como as partículas são aceleradas’ “, disse Nicola J. Fox, cientista associado do projeto no Laboratório de Física Aplicada da Universidade Johns Hopkins em Laurel, Maryland. “Com cinco conjuntos idênticos de instrumentos a bordo de cada espaçonave  – cada um com um amplo espectro de detecção de ondas e partículas – nós temos a melhor plataforma já criada para poder compreender melhor esta região crítica do espaço acima da Terra”.

O Laboratório de Física Aplicada construiu e opera as Sondas gêmeas Van Allen para a Diretoria de Missões Científicas da NASA. As Sondas Van Allen são a segunda missão do programa Living With a Star NASA, gerenciado pelo Centro Goddard, para explorar os aspectos do sistema Sol-Terra que afetam diretamente a vida e a sociedade.

Para mais informações sobre as sondas Van Allen (em inglês), visite:

 www.nasa.gov/vanallenprobes/

 

 

Um novo e surpreendente material


DOE/Argonne National Laboratory

Descoberto um novo estado de material contra-intuitivo às leis da física

Transições induzidas pela pressão são associadas com expansões de volume de até 2 vezes. Embora um aumento do volume com a pressão seja algo contra-intuitivo, as novas fases obtidas contêm grandes poros cheios de fluidos, tais que o volume combinado sólido + fluido é reduzido e as ineficiências de preenchimento de espaços na fase interpenetrada inicial são eliminadas. Para ver uma versão ampliada da imagem, clique nela.

LEMONT, ILLINOIS. — Quando se espreme alguma coisa, ela fica menor. A menos que você esteja no Laboratório Nacional Argonne.

No laboratório, nos subúrbios de Chicago, um grupo de cientistas aparentemente conseguiu desafiar as leis da física e descobriu uma maneira de aplicar pressão de modo a fazer um material se expandir, em lugar de se comprimir ou contrair.

“É com se espremêssemos uma pedra e ela virasse uma enorme esponja”, diz Karena Chapman, uma química do laboratório do Departamento de Energia dos EUA. “Espera-se que os materiais fiquem mais densos e mais compactos sob pressão. O que estamos vendo é exatamente o oposto. O material comprimido fica com a metade da densidade do estado original. Isso é contra-intuitivo às leis da física”.

Como um tal comportamento parece ser realmente impossível, Chapman e seus colegas levaram vários anos testando e retestando o material, até que passaram a acreditar no inacreditável e compreenderam como o impossível era possível. A cada experiência, obtiveram os mesmos resultados atordoantes.

“As ligações no material se rearrumam completamente”, explica Chapman. “Isso me deixa perplexa”.

Esta descoberta vai acarretar mais do que ter que reescrever os livros de ciência; ela pode dobrar a variedade de materiais de estrutura porosa disponíveis para a fabricação de itens de tratamento de saúde e controle ambiental.

Os cientistas usam este tipo de materiais que têm buracos como uma esponja em sua estrutura, para capturar, armazenar e filtrar materiais. O formato dos buracos de “esponja” os torna particularmente adequados para moléculas específicas, permitindo seu uso como filtros d’água, sensores químicos e recipientes de armazenagem compressíveis para o sequestro de carbono de células combustíveis de hidrogênio. Ajustando as taxas de percolação, os cientistas podem adaptar essas estruturas para a aplicação dirigida de medicamentos e para dar início a reações químicas para a produção de quase qualquer coisa, de plásticos a alimentos.

“Isso pode não só abrir o caminho para tornar novos materiais porosos, como também nos dar acesso a novas estruturas para capacidade de selecionamento e novas taxas de percolação”, afirma Peter Chupas, um químico do Laboratório Argonne que colaborou na descoberta dos novos materiais.

Os detalhes do trabalho da equipe foram publicados na edição de 22 de maio de Journal of the American Chemical Society em um artigo intitulado “Explorando Altas Pressões para Gerar Porosidade, Polimorfismo e Expansão da Reticulação na Estrutura Molecular Não-porosa do Zn(CN)2″ (“Exploiting High Pressures to Generate Porosity, Polymorphism, And Lattice Expansion in the Nonporous Molecular Framework Zn(CN)2 “).

Os cientistas puseram cianeto de zinco, um material usado em eletrodeposição, em uma bigorna de diamante na Fonte Avançada de Fótons (Advanced Photon Source = APS) no Laboratório Argonne e aplicaram altas pressões, da ordem de 0,9 a 1,8 gigaPascals, ou seja: de 9.000 a 18.000 vezes a pressão atmosférica. Estas altas pressões estão dentro da faixa obtenível pela indústria para sistemas de armazenamento a granel. Empregando diferentes fluidos no entorno do material enquanto ele era espremido, os cientistas conseguiram criar cinco novas fases do material, duas das quais mantiveram sua nova capacidade porosa em pressão normal. O tipo de fluido empregado determinava o formato dos poros da “esponja”. Esta foi a primeira vez que a pressão hidrostática conseguiu transformar materiais densos com estruturas atômicas interpenetradas em novos materiais porosos. Várias séries de experiências de difração raios-X de alta pressão series, in situ, foram feitas nas faixas de feixe de 1-BM, 11-ID-B e 17-BM da APS para estudar as transições do material.

“Aplicando a pressão fomos capazes de transformar um material normalmente denso e não-poroso em um leque de novos materiais porosos que podem conter até o dobro de outros materiais”, diz Chapman. “Esta descoberta contra-intuitiva provavelmente vai dobrar a quantidade de materiais de estrutura porosa que poderão expandir seu uso em aplicação de fármacos, sequestro [de gases], filtragem de materiais e catálise”.

Os cientistas continuarão a testar a nova técnica em outros materiais

###

Mais uma teoria sobre a Matéria Escura


Vanderbilt University

Uma teoria simples pode explicar a misteriosa matéria escura

 IMAGEM: Esta é uma comparação entre um campo anapolar com os campos dipolos elétrico e magnético comuns. O campo anapolar, acima, é gerado por uma corrente elétrica toroidal. Como resultado, o campo fica restrito ao torus, em vez de se propagar como os campos dipolos comuns.

Crédito:  Michael Smeltzer, Vanderbilt University

Imagem ampliada.

A maior parte da matéria do universo pode ser feita de partículas que possuem um incomum campo eletromagnético em forma de anel, chamado anapolo.

Esta proposta, que dota as partículas de matéria escura com uma forma rara de eletromagnetismo, foi reforçada por uma análise detalhada realizada por um par de físicos teóricos da Universidade Vanderbilt: o Professor Robert Scherrer e o doutor-associado Chiu Man Ho. Um artigo sobre a pesquisa foi publicado online no mês passado por Physics Letters B.

“Existem muitas teorias diferentes acerca da natureza da matéria escura. O que eu gosto nesta teoria é sua simplicidade, singeleza e o fato de que pode ser testada”, disse Scherrer.

No artigo, intitulado “Anapole Dark Matter,” os físicos propõem que a matéria escura – um tipo invisível de matéria que perfaz 85% de toda a matéria do universo – pode ser constituída de um tipo básico de partícula chamado Férmion de Majorana. A existência desta partícula foi prevista em 1930, mas ela tem teimosamente resistido a ser detectada.

Um bom número de físicos sugeriu que a matéria escura seja feita de Férmions de Majorana, porém Scherrer e Ho realizaram cálculos detalhados que demonstram que essas partículas são particularmente adequadas a possuir um tipo raro de campo eletro-magnético em forma de anel, chamado um anapolo. Este campo lhes conferiria propriedades diferentes das partículas que possuem campos mais comuns, do tipo com dois polos (norte e sul, positivo e negativo) e explica por que elas são tão difíceis de detectar.

“A maioria dos modelos para a matéria escura supõe que ela interaja por meio de forças exóticas que não encontramos no dia-a-dia. A matéria escura anapolar usa o mesmo eletromagnetismo que aprendemos na escola – a mesma força que faz com que os imãs grudem em sua geladeira ou fazem com que um balão de ar esfregado nos cabelos grude no teto”, explica Scherrer. “Além disso, o modelo faz predições muito específicas acerca das quantidades que deverão ser detectadas nos enormes detectores de matéria escura enterrados no chão por todo o mundo. Tais predições mostram que a existência da matéria escura anapolar deve ser comprovada ou descartada em breve por tais experimentos”.

Férmions são partículas como o elétron e o quark, que são os componentes básicos da matéria. Sua existência foi predita por Paul Dirac em 1928. Des anos depois, pouco antes de desaparecer misteriosamente no mar, o físico italiano Ettore Majorana produziu uma variante da fórmula de Dirac que prevê a existência de um férmion eletricamente neutro. Desde então, os físicos vêm buscando os Férmions de Majorana. O candidato inicial foi o neutrino, porém os cientistas não conseguiram determinar a natureza dessa partícula elusiva.

A existência da matéria escura foi também inicialmente proposta nos anos 1930 para explicar as discrepâncias nas velocidades de rotação dos aglomerados galáticos. Subsequentemente, os astrônomos  descobriram  que a rotação das estrelas em torno das galáxias individuais também estava fora de sincronia. As observações detalhadas mostraram que as estrelas afastadas do centro das galáxias estão girando em velocidades muito mais altas do que poderia ser explicado pela quantidade de matéria visível que as galáxias contêm. Presumir que elas contenham uma grande quantidade de matéria “escura” invisível é a conclusão mais lógica para explicar tais discrepâncias.

Os cientistas hipotetizaram que a matéria escura não pode ser vista pelos telescópios porque ela não interage de maneira forte com a luz e outras radiações eletromagnéticas. Com efeito, as observações astronômicas basicamente descartaram a possibilidade de que as partículas de matéria escura tenham cargas elétricas.

Entretanto, mais recentemente, vários cientistas consideraram partículas de matéria escura que não teham cargas elétricas, mas têm dipolos elétricos ou magnéticos. O único problema é que, mesmo que esses modelos complicados são descartáveis em favor de partículas de Majorana. Esta é uma das razões pelas quais Ho e Scherrer examinaram mais de perto a versão de matéria escura com um momento magnético anapolar.

“Embora os Férmions de Majorana sejam eletricamente neutros, as simetrias fundamentais da natureza os proíbem de adquirir quaisquer propriedades eletromagnéticas, exceto se foram anapolares”, diz Ho. A existência de um anapolo magnético foi previsto pelo físico soviético Yakov Zel’dovich em 1958. Desde então, isso foi observado na estrutura magnética dos núcleos dos átomos do césio-133 e do itérbio-174.

Partículas com os familiares dipolos elétrico e magnético interagem com campos eletromagnéticos até quando estão estacionárias. As partículas com anapolos, não. Estas precisam estar em movimento antes que possam interagir e quanto mais rápido se moverem, mais forte será a interação. Em função disto, as partículas anapolares teriam sido muito mais interativas durante os estágios iniciais do universo e teriam se tornado cada vez menos interativas na medida em que o universo se expandiu e esfriou.

As partículas de matéria escura anapolar sugeridas por Ho e Scherrer teriam se aniquilado no universo primitivo tal como quaisquer outras partículas de matéria escura propostas, e as partículas remanescentes deste processo formariam a matéria escura que vemos hoje [NT: ou não vemos...]. Porém, como a matéria escura está se movendo muito mais devagar no presente e porque as interações anapolares dependem de quão depressa elas se movem, essas partículas teriam escapado da detecção até agora, porém por muito pouco.

 

###

Um novo segredo gelado


Carnegie Institution

Mistério derretido: H2O revela um novo segredo

 IMAGEM: Um fragmento da estrutura cristalina do novo tipo de gelo — os átomos de oxigênio são representados em azul, os de hidrogênio em rosa; os hidrogênios expulsos de suas moléculas em amarelo – esses últimos parecem ficar localizados nos vazios da estrutura poliédrica do oxigênio, uma das quais é representada pelo sombreado cinza. Anteriormente se acreditava que esses vazios continuavam a existir mesmo após a molécula de água se romper a pressões extremas.

Imagem cortesia do Oak Ridge National Laboratory

Imagem ampliada e mais informações.

Washington, D.C.— Empregando novas técnicas revolucionárias, uma equipe liderada por Malcolm Guthrie da Carnegie fez uma chocante descoberta sobre como o gelo se comporta sob pressão, modificando ideias que vigiam a quase 50 anos. Suas descobertas podem modificar nossa compreensão sobre como a molécula de água responde a condições encontradas nas profundezas dos planetas e pode ter outras implicações nas ciências de energia. Este trabalho foi publicado em Proceedings of the National Academy of Sciences.

Quando a água se torna gelo, suas moléculas são reunidas em uma estrutura cristalina através das pontes de hidrogênio. As pontes de hidrogênio são muito versáteis e, em função disto, os cristais de gelo podem apresentar uma chocante diversidade com ao menos 16 tipos de estrutura diferentes.

Em todas essas formas de gelo, a simples molécula de H2O é o elemento básico de construção. Entretanto, em 1964 foi previsto que, sob pressão suficiente, as pontes de hidrogênio pode se reforçar ao ponto onde elas podem mesmo romper as moléculas. A possibilidade de observar diretamente uma molécula de água dissociada se provou uma isca fascinante para os cientistas e foi objeto de contínuas pesquisas pelos últimos 50 anos. Nos meados da década de 1990, várias equipes, inclusive uma da Carnegie, observou a transição por meio de técnicas de espectroscopia. Porém estas técnicas eram indiretas e somente conseguiam uma parte do quadro.

Um dos métodos preferidos é “ver” diretamente os átomos de hidrogênio – melhor dizendo, os prótons. Isso pode ser feito quicando nêutrons no gelo e medindo cuidadosamente sua dispersão. Porém a aplicação desta técnica em altas pressões para ver a molécula se dissociar simplesmente não era possível até agora. Guthrie explica: “só se consegue chegar a essas pressões extremas se suas amostras de gelo forem realmente pequenas. Infelizmente, isso torna os átomos de hidrogênio muito difíceis de enxergar”.

A Fonte de Espalação de Nêutrons (Spallation Neutron Source = SNS) foi aberta no Laboratório Nacional de Oak Ridge no Tennessee em 2006, para fornecer um novo e extremamente brilhante suprimento de nêutrons. Tendo projetado uma nova classe de ferramentas, otimizadas para explorar esse fluxo sem precedentes de nêutrons, Guthrie e sua equipe – Russell Hemley, Reinhard Boehler e Kuo Li, da Carnegie, juntamente com Chris Tulk, Jamie Molaison e António dos Santos do Laboratório Nacional de Oak Ridge –conseguiram obter os primeiros vislumbres dos próprios átomos de hidrogênio no gelo a pressões sem precedentes, da ordem de 500.000 vezes a pressão atmosférica.

“Os nêutrons nos dizem o que outras técnicas não conseguiam”, diz Hemley, diretor do Laboratório de Geofísica da Carnegie. “Os resultados indicam que a dissociação das moléculas de água segue dois mecanismos diferentes. Algumas moléculas começam a se dissociar a pressões bem mais baixas e por um caminho diferente do previsto no clássico artigo de 1964″.

“Nossos dados pintam um quadro totalmente novo acerca do gelo”, comenta Guthrie. “Os resultados têm não só amplas consequências para a compreensão das ligações na H2O; as observações também podem apoiar uma teoria anteriormente proposta de que os prótons no gelo do interior dos planetas podem ser móveis, mesmo que o gelo continue sólido”.

E esta surpreendente descoberta pode se provar apenas o início de descobertas científicas. Tulk enfatiza que “conseguir ‘enxergar’ o hidrogênio com nêutrons não é importante só para os estudos do gelo. Isso pode se revelar uma descoberta capaz de mudar todo o jogo na técnica. As aplicações poderiam se estender a sistemas críticos para desafios socialmente críticos, tais como o campo da energia. Por exemplo, a técnica pode levar a uma compreensão melhor de hidratos de clatrato contendo metano e até de materiais para armazenagem de hidrogênio que podem, um dia, abastecer automóveis”.

 

###

Diamantes com defeito?… Perfeito!


DOE/Lawrence Berkeley National Laboratory

Diamantes defeituosos prometem sensibilidade perfeita

Pesquisadores do Laboratório Berkeley e seus colegas estendem o spin dos elétrons nos diamantes para fazer detectores magnéticos incrivelmente pequenos

 IMAGEM: Um centro de vacância de nitrogênio é um tipo de defeito puntual na estrutura cristalina de um diamante, no qual um átomo de nitrogênio fica no lugar de um átomo de carbono e fica uma vaga imediatamente adjacente ao nitrogênio.Clique aqui para mais informações.

Desde o cérebro, passando pelo coração e chegando ao estômago, os corpos dos animais geram campos magnéticos fracos que um detector ultra sensível poderia usar para descobrir doenças, rastrear drogas – e, quem sabe?… até ler mentes. Sensores do tamanho da unha do polegar poderiam mapear depósitos de gás no subsolo, analisar substâncias químicas e descobrir explosivos que poderiam se esconder de outras sondas.

Agora os cientistas do Laboratório Nacional Lawrence Berkeley (Berkeley Lab) do Departamento de Energia e da Universidade da California em Berkeley, em conjunto com seus colegas da Universidade Harvard, conseguiram aumentar o desempenho de um dos sensores mais potentes possíveis de campos magnéticos em nanoescala – um defeito em um diamante do tamanho de um par de átomos, chamado um “centro de vacância de nitrogênio” (nitrogen vacancy = NV center).

As descobertas da equipe de pesquisadores pode eventualmente permitir a fabricação de relógios menores que um chip de computador e, ainda assim, precisos até uns poucos quatrilhões de segundo, ou sensores de movimentoa mais rápidos e com maior tolerância a temperaturas extremas do que os giroscópios em smartphones. Não demora muito e um chip barato de diamante pode ser capaz de nuclear um computador quântico. A equipe relata seus resultados em Nature Communications.

Um sensor feito de diamante

Centros de vacância de nitrogênio são um dos defeitos mais comuns em diamantes. Quando um átomo de nitrogênio substitui um átomo de carbono no cristal de diamante e fica emparelhado com um espaço vazio (onde falta um átomo de carbono que devia estar lá), neste centro fica um número de elétrons, soltos dos átomos de carbono que deveriam estar naqueles lugares.

Os estados dos spins dos elétrons são bem definidos e muito sensíveis a campos magnéticos, campos elétricos e luz*, de forma que podem ser facilmente dispostos, ajustados e lidos por lasers.

“Os estados de spin dos centros NV são estáveis ao longo de um amplo espectro de temperaturas, de muito quente a muito frio”, diz Dmitry Budker da Divisão de Ciência Nuclear do Berkeley Lab, que também é professor de física da UC Berkeley. Mesmo pequenas lascas de diamante que custam centavos por grama, podem ser usadas como sensores, porque, como afirma Budker, “nós podemos  controlar o número de centros NV no diamante apenas os irradiando ou assando”, ou seja, dando-lhes têmpera.

O desafio é manter a informação inerente nos estados de spin do centro NV, uma vez que esta tenha sido lá codificada, sem deixá-la vazar antes que se possa realizar medições: nos centros NV, isso requer a extensão do que é chamado de tempo de “coerência” dos spins dos elétrons, ou seja, o tempo que os spins permanecem sincronizados entre si.

Recentemente Budker trabalhou com Ronald Walsworth de Harvard em uma equipe que incluía Nir Bar-Gill de Harvard e  Andrey Jarmola pesquisador pós-doutorado da UC Berkley. Eles conseguiram estender o tempo de coerência de um conjunto de spins de elétrons de um centro NV por mais de duas ordens de magnitude acima das experiências anteriores.

“Para mim, o aspecto mais entusiasmante deste resultado é a possibilidade de estudar as mudanças nas formas com que os centros NV interagem entre si”, diz Bar-Gill, autor principal do artigo e que estará indo para a Universidade Hebraica em Jerusalém no segundo semestre deste ano. “Isto é possível porque os tempos de coerência são muito mais longos do que aquele necessário para as interações entre os centros NV”.

E Bar-Gill acrescenta: “Agora podemos imaginar a engenharia de amostras de diamantes para realizar arquiteturas de computação quântica”. Os centros NV interativos fazem o papel dos bits em computadores quânticos, chamados qubits. Onde um dígito binário (bit) representa um 0 ou 1, um qubit representa 1 e 0 superpostos, um estado tipo “Gato-de-Schrödinger” simultâneo que persiste enquanto os estados forem coerentes, até que uma medição seja feita e faça colapsar todos os qubits emaranhados de uma só vez.

“Nós empregamos alguns truques para nos livrarmos de fontes de descoerência”, diz Budker. “Um deles foi usar amostras de diamante especialmente preparadas para serem feitas apenas de puro carbono-12″. Os diamantes naturais incluem uma pequena quantidade do isótopo carbono-13, cujo spin nuclear acelera a descoerência dos spins dos elétrons dos centros NV. O carbono-12 tem um spin nuclear zero.

“O outro truque foi baixar a temperatura até a do nitrogênio líquido”, diz Budker. A descoerência foi reduzida pelo resfriamento das amostras a 77°K, abaixo da temperatura ambiente, mas facilmente obtenível.

Trabalhando em conjunto no laboratório de Budker, os membros da equipe montaram os diamantes dentro de um criostato. Um feixe de laser atravessando o diamante, conjugado com um campo magnético, ajustou os spins dos elétrons no centro NV e os fez emitir fluorescência.  O brilho fluorescente foi a medida da coerência dos estados de spin.

“Controlar o spin é essencial”, explica Budker, “de forma que pegamos emprestada uma ideia da ressonância magnética nuclear”  – a base de procedimentos familiares como o Imageamento por Ressonância Magnética (MRI) nos hospitais.

Embora seja diferente do spin nuclear, a coerência dos spins dos elétrons pode ser estendida com técnicas semelhantes. Assim, quando os estados dos spins nos centros NV chegavam à beira da descoerência, os pesquisadores chacoalhavam o diamante com uma série de até 10.000 curtos pulsos de micro-ondas. Os pulsos invertiam os spins dos elétrons quando começavam a perder o sincronismo mútuo, produzindo “ecos” nos quais os spins invertidos se auto-ajustavam. A coerência era re-estabelecida.

Eventualmente os pesquisadores conseguiram tempos de coerência de spin de mais de meio segundo. “Nossos resultados são realmente brilhantes para o sensoreamento de campos magnéticos e informação quântica”, brinca Bar-Gill.

Longos tempos de coerência de spin se soma às vantagens que os diamantes já têm, colocando os NVs de diamantes na vanguarda dos potenciais candidatos para computadores quânticos práticos – uma busca favorita dos pesquisadores de Harvard. O que o grupo de Budker acredita ser uma perspectiva ainda mais interessante é o potencial que os longos tempos de coerência apresentam no sensoreamento de campos magnéticos, com aplicações que vão da biofísica à defesa.

 

###

“Solid-state electronic spin coherence time approaching one second”, por Nir Bar-Gill, Linh M. Pham, Andrey Jarmola, Dmitry Budker e Ronald L. Walsworth,será publicado na edição de 23 de abril de 2013 da  Nature Communications, online em http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2771.html.


Nota do tradutor: [*] Considerando que os fótons – as partículas de luz, não só a visível, mas todas as frequências – são portadores dos campos elétricos e magnéticos, é claro que se algo é sensível aos campos elétricos e magnéticos terá que ser sensível à luz… Enfim…

Antimatéria = Antigravidade (???)

University of California – Berkeley

A antimatéria é antigravidade?

Primeira medição direta do peso da antimatéria, comparado ao da matéria normal

 IMAGEM: Físicos da UC Berkeley/LBNL se perguntam se o hidrogênio normal (esquerda) pesa o mesmo que o anti-hidrogênio (direita)

Clique aqui para mais informações.

A antimatéria é um negócio esquisto  Ela tem a carga elétrica oposta à da matéria normal e, quando se encontra com sua contraparte, as duas se aniquilam, gerando um clarão de luz.

Quatro físicos da Universidade da Califórnia em Berkeley estão se perguntando se a matéria e a antimatéria seriam afetadas pela gravidade de maneira diferente. Será que a antimatéria poderia cair para cima  – ou seja, exibir antigravidade – ou cair para baixo com uma aceleração diferente da matéria normal?

Quase todo o mundo, inclusive os físicos, acham que a antimatéria provavelmente vai cair da mesma forma que a matéria normal, mas ninguém até agora deixou antimatéria cair para ver se isso é verdade, argumenta Joel Fajans, professor de física da UC Berkeley. E, embora existam muitos indícios indiretos de que antimatéria e matéria pesem a mesma coisa, todos eles dependem de suposições que podem não ser corretas. Alguns poucos teóricos argumentam que alguns busílis cosmológicos, tais como, por exemplo, por que existe mais matéria do que antimatéria, poderiam ser explicados se a antimatéria caísse para cima.

Em um novo artigo publicado online em 30 de abril na Nature Communications, os físicos da UC Berkeley e seus colegas da experiência ALPHA no CERN em Genebra, relatam a primeira medição direta do efeito da gravidade sobre a antimatéria, especificamente anti-hidrogênio em queda livre. Embora os resultados estejam longe de serem definitivos – a incerteza é cerca de 100 vezes maior do que a medição esperada – a experiência da UC Berkeley aponta na direção de uma resposta definitiva sobre a questão fundamental de se a antimatéria cai para cima ou para baixo.

“Esta é a primeira palavra, não a última”, diz Fajans. “Nós demos os primeiros passos na direção de uma experiência direta de questões que físicos e não-físicos têm matutado por mais de 50 anos. Certamente nós esperamos que a antimatéria caia para baixo, mas pode bem ser que tenhamos uma surpresa”.

Fajans e seu colega físico, professor Jonathan Wurtele, se valeram de dados do Aparato Laser de Física de Anti-hidrogênio (Antihydrogen Laser Physics Apparatus = ALPHA) no CERN. A experiência captura antiprótons e os combina com antielétrons (posítrons) para fabricar átomos de anti-hidrogênio, os quais são armazenados e estudados por uns poucos segundos em uma armadilha magnética. Depois, no entanto, a armadilha é desligada e os átomos caem para fora. Os dois pesquisadores perceberam que, analisando como o anti-hidrogênio cai da armadilha, eles poderiam estabelecer se a gravidade atuava sobre o anti-hidrogênio de maneira diferente da que atua sobre o hidrogênio.

O anti-hidrogênio não se comportou de maneira estranha, de forma que eles calcularam que ele não pode ser mais do que 110 vezes mais pesado do que o hidrogênio. Se a antimatéria for antigravitacional – coisa que eles ainda não podem descartar – ele não acelera para cima a mais de 65 Gs.

“Precisamos fazer melhor e esperamos fazê-lo nos próximos anos”, diz Wurtele. A experiência ALPHA está passando por aperfeiçoamentos e deve fornecer dados mais precisos quando voltar a operar em 2014.

 

###
Fontes:

Uma nova assimetria entre matéria e antimatéria

lhcb

Vista da área subterrânea do LHCb, olhando para cima a partir do fundo do poço.

(Imagem: Anna Pantelia/CERN)


A experiência LHCb (Large Hadron Collider beauty – onde o “beauty” ainda usa o nome antigo para o quark  ”bottom”) descobriu mais uma assimetria no decaimento dos Bósons B (mais exatamente no méson B0 – formado por um antiquark “bottom” e um quark “strange”). Esta é a quarta partícula a exibir essa quebra de simetria (e os dados, coletados nas experiências de 2011 têm uma significância maior que 5 Sigma).

Supostamente, no início da existência do universo, foram criadas quantidades simetricamente iguais de matéria e antimatéria, mas, por algum motivo ainda desconhecido, a matéria acabou prevalecendo e o universo atual é feito dela (bem… pelo menos uns quase 5% do atual universo – o resto é matéria escura e energia escura, sejam isso lá o que forem).

É exatamente isso uma das coisas que os cientistas do LHC pesquisam: esse viés do universo pela matéria, em desfavor da antimatéria – ou, em termos mais técnicos, “violação da simetria CP” . E uma das experiências em curso no LHC é a LHCb, que examina o decaimento dos mésons que contêm quarks bottom (genericamente chamados que “mésons B”).

A primeira vez que se observou uma violação da simetria CP foi no decaimento dos Kaons (ou mésons K), pelo Laboratório de Brookhaven, nos EUA, em 1960. Mais 40 anos se passaram e, no Japão e nos EUA, verificaram que o decaimento dos mésons B0 (antiquark bottom e quark up) também apresentava o mesmo comportamento.

Recentemente, tanto a experiência LHCb, como outras “fábricas de Bs”, tinham flagrado essa violação CP no decaimento dos mésons B+ (antiquark bottom + quark up).

Todas essas violações da paridade CP estão perfeitamente de acordo com o Modelo Padrão da Física de Partículas (ou, se você preferir, Física Quântica, ou ainda Física de Altas Energias), mas as discrepâncias observadas ainda são dignas de estudos mais aprofundados. Como declara Pierluigi Campana, porta-voz da colaboração LHCb: “Nós também sabemos que o efeito total induzido pelas violações CP do Modelo Padrão, são muito pequenas para explicar a total predominância da matéria sobre a antimatéria. No entanto, através do estudo dessas violações CP, estamos procurando pelas peças que faltam no quebra-cabeças, realizando testes que comprovam com mais acurácia as previsões da teoria do Modelo Padrão e sondando a possibilidade da existência de uma física além do Modelo Padrão”.

###

Fonte: LHCb experiment observes new matter-antimatter difference.

Artigo submetido ao Physical Review Letters – First observation of CP violation in the decays of Bs mesons.

Mandando a luz para onde ela deve ir


Harvard University

Os físicos encontraram a solução para a óptica on-chip

Roteador em nano-escala converte e direciona com eficiência sinais ópticos

 IMAGEM: Dois dispositivos de acoplamento baseados no padrão em espinha de peixe: um dispositivo retangular e outro anular.

Clique aqui para mais informações.

Cambridge,  Massachusetts. – 22 de abril de 2013 – Uma equipe de pesquisadores com base em Harvard criou um novo tipo de nano-dispositivo que converte um sinal óptico em ondas que se propagam ao longo de uma superfície de metal. A característica mais significativa deste dispositivo é que ele pode reconhecer tipos específicos de luz polarizada e, segundo essa polarização, enviar o sinal em uma determinada direção.

A descoberta, publicada na edição de 19 de abril da Science, dá uma nova maneira para manipular precisamente a luz na escala abaixo do comprimento de onda, sem danificar um sinal que pode transportar dados. Isto abre as portas para uma nova geração de interconexões ópticas em chips que podem canalizar informações de dispositivos ópticos para dispositivos eletrônicos.

“Se quisermos enviar um sinal de dados para todos os lados de um pequeno chip com vários componentes, precisamos ser capazes de controlar precisamente para onde o sinal vai”, explica Balthasar Müller, principal co-autor do artigo e estudante de pós-graduação na Escola de Engenharia e Ciências Aplicadas (School of Engineering and Applied Sciences = SEAS) em Harvard. “Se o sinal não for bem controlado, a informação se perde. A direcionalidade é um fator extremamente importante”.

O acoplador transforma a luz incidente em um tipo de onda chamado polariton plasmon de superfície, uma ondulação superficial no mar de elétrons que existe nos metais.

 IMAGEM: Uma micrografia eletrônica que exibe as perfurações em nano-escala do acoplador plasmônico.

Clique aqui para mais informações.

Antigamente já era possível controlar a direção dessas ondas, mudando-se o ângulo de incidência da luz sobre o acoplador, porém, como coloca Müller, “Isso era uma grande maçada. Circuitos ópticos são muito difíceis de alinhar, de modo que reajustar os ângulos para rotear o sinal não era uma solução prática”.

Com o novo acoplador, a luz só precisa incidir perpendicularmente e o dispositivo faz o resto. Atuando como um controlador de tráfego, ele lê a polarização da onda de luz incidente – que pode ser linear, circular destrógira, ou circular levógira – e a roteia de acordo com isso. O dispositivo pode até dividir um feixe de luz e enviar partes dele em diferentes direções, permitindo a transmissão da informação em vários canais.

O acoplador consiste de uma fina folha de ouro, salpicada de pequenas perfurações. Porém, é no preciso padrão formado pelas fendas, dispostas como espinhas de peixe, onde reside a genialidade.

“A solução mais empregada até agora era uma série de ranhuras paralelas, conhecidas como gradil, que funciona, mas perde uma grande parte do sinal no processo”, explica o principal pesquisador Federico Capasso, Professor ”Robert L. Wallace” de Física Aplicada e Pesquisador Associado Sênior “Vinton Hayes” de Engenharia Elétrica na SEAS de Harvard. “Talvez agora nossa solução seja a mais empregada. Ela torna possível controlar a direção dos sinais de maneira simples e elegante”.

 IMAGEM: Estas imagens, tiradas com um microscópio de escaneamento óptico de campo próximo, mostram as ondas plasmônicas se propagando pela superfície do acoplador.

Clique aqui para mais informações.

Uma vez que a nova estrutura é tão pequena — cada uma das unidades que se repetem é menor do que o comprimento de onda da luz visível — os pesquisadores acreditam que será fácil incorporá-la em novas tecnologias, tais como óptica plana.

Porém Capasso fala animadamente acerca das possibilidades de incorporar o novo acoplador em futuras redes de informação de alta velocidade que podem combinar eletrônica em nano-escala com elementos ópticos e plasmônicos em um único microchip.

“Isto gerou um grande entusiasmo neste campo”, conclui Capasso.

 

###

 

Müller e Capasso tiveram a colaboração do co-autor principal Jiao Lin, um antigo doutor pesquisador da SEAS que agora está no Instituto de Tecnologia de Manufatura de Singapura; e dos co-autores Qian Wang e Guanghui Yuan, da Universidade Tecnológica Nanyang, Singapura; Nicholas Antoniou, Principal Engeneheiro FIB no Centro Harvard de Sistemas em Nano-escala; e Xiao-Cong Yuan, professor do Instituto de Óptica Moderna na Universidade Nankai na China.

 

O que é mesmo “inteligência”?

Photobucket

Físico propõe uma nova abordagem para o conceito de inteligência

Estes diagrama mostram como o software que considera as “forças entrópicas causais”, emula o comportamento inteligente necessário para caminhar ereto ou usar ferramentas.
Crédito da imagem: Cortesia de Alexander Wissner-Gross

Um conceito radical pode causar a revisão das teorias que abordam o comportamento cognitivo

19 de abril de 2013 – 16:30

Por: 

Chris Gorski, ISNS

(ISNS) — Uma simples equação, fundamentada nos princípios básicos da física, pode descrever a inteligência e estimular novas abordagens em campos tão diversos quanto as finanças e a robótica – é o que diz uma nova pesquisa.

Alexander Wissner-Gross, um físico da Universidade Harvard e do Massachusetts Institute of Technology, e Cameron Freer, um matemático da Universidade do Hawaii em Manoa, desenvolveram uma equação que, segundo eles, descreve muitos comportamentos ditos inteligentes ou cognitivos, tais como caminhar ereto e usar ferramentas.
Os pesquisadores sugerem que o comportamento inteligente tem origem no impulso de obter o controle de eventos futuros no ambiente. Isto é exatamente o oposto do clássico cenário de ficção-científica onde os computadores ou robôs se tornam inteligentes e resolvem dominar o mundo.
As descobertas descrevem uma relação matemática que pode “induzir espontaneamente comportamentos notavelmente sofisticados associados ao ‘nicho cognitivo’ humano, o que inclui o uso de ferramentas e a cooperação social, em sistemas físicos simples”, como diz o artigo publicado por eles hoje na Physical Review Letters.
“É um artigo provocativo”, disse Simon DeDeo, um pesquisador do Santa Fe Institute que estuda sistemas biológicos e sociais. “Não é o que costumamos chamar de ciência”.
Wissner-Gross, um físico, disse que a pesquisa era “muito ambiciosa” e citou desenvolvimentos em vários campos como as principais fontes de inspiração.
A matemática por trás da pesquisa vem da teoria sobre como a energia térmica pode realizar trabalho e se dissipar com o tempo – a termodinâmica. Um dos conceitos fundamentais da física é chamado entropia – a tendência que têm os sistemas de evoluir para uma quantidade maior de desordem. A segunda lei da termodinâmica explica como, em qualquer sistema isolado, a quantidade de entropia tende a aumentar. Por exemplo, um espelho pode se despedaçar em vários cacos, mas uma coleção de cacos não vai se reajuntar em um espelho.
Esta nova pesquisa propõe que a entropia é diretamente conectada ao comportamento inteligente.
“[O artigo] é basicamente uma tentativa de descrever a inteligência como um processo fundamentalmente termodinâmico”, declara Wissner-Gross.
Os pesquisadores desenvolveram um software, chamado Entropica, e o alimentaram com modelos de várias situações onde ele pudesse demonstrar comportamentos que se parecessem muito com inteligência. E eles criaram os padrões de muitos desses exercícios com base em clássicos testes de inteligência animal.
Em um dos testes, os pesquisadores apresentaram a Entropica uma situação onde ele poderia usar um item como ferramenta para retirar outro item de dentro de um recipiente; em outro, ele poderia mover um carrinho de modo a balancear uma das rodas suspensa no ar. Governado pelos simples princípios da termodinâmica, o software respondeu exibindo um comportamento similar ao que as pessoas ou animais poderiam fazer, tudo isso sem ter recebido uma meta específica para qualquer um dos cenários.
“Ele realmente auto-determina qual é seu objetivo”, conta Wissner-Gross. “Esta [inteligência artificial] não precisa da especificação explícita de uma meta, diferentemente de qualquer outra [inteligência artificial]“.
O comportamento inteligente do Entropica emerge do “processo físico de tentar capturar tantas histórias futuras quanto possível”, diz Wissner-Gross. As histórias futuras representam todo o conjunto de possíveis resultados que estão disponíveis para um sistema em qualquer dado momento.
Wissner-Gross chama o conceito central da pesquisa de “forças entrópicas causais”. Essas forças são a motivação do comportamento inteligente. Elas encorajam o sistema a preservar tantas histórias futuras quanto for possível. Por exemplo, no exercício do carrinho-e-roda, o Entropica controla o carrinho para manter a roda erguida. Permitir que a roda caísse, diminuiria drasticamente o número de histórias futuras restantes, ou, em outras palavras, reduziria a entropia do sistema carro-e-roda. Manter a roda suspensa no ar, maximiza a entropia. Isto mantem todas as histórias futuras que podem ter início neste estado, inclusive as resultantes de deixar a roda do carrinho cair.
“O universo existe no estado presente que tem agora. Ele pode prosseguir em várias direções diferentes. Minha proposta é que a inteligência é um processo que tenta se assenhorar das histórias futuras”, explicou Wissner-Gross.
A pesquisa pode ter aplicações além das que são tipicamente associadas à inteligência artificial, inclusive estruturas da linguagem e cooperação social.
DeDeo disse que seria interessante aplicar esta nova estrutura para examinar a WikiPedia e pesquisar se ela, enquanto sistema, exibe os mesmos comportamentos descritos no artigo.
“Para mim [esta pesquisa] parece uma tentativa autêntica e honesta de encarar questões realmente grandes”, disse DeDeo.
Uma aplicação potencial dessa pesquisa é o desenvolvimento de robôs autônomos que possam reagir a ambientes mutáveis e escolher seus próprios objetivos.
“Eu estaria muito interessado em aprender mais e compreender melhor o mecanismo com o qual eles estão conseguindo alguns resultados impressionantes, porque isso poderia potencialmente auxiliar nossa busca pela inteligência artificial”, declarou Jeff Clune, um cientista de computação na Universidade do Wyoming.
Clune, que cria simulações de evolução e usa a seleção natural para evoluir inteligência artificial e robôs, expressou algumas reservas quanto à nova pesquisa, que ele sugeriu que pode ser motivada por uma diferença do jargão usado nos diferentes campos. Wissner-Gross deu a entender que ele espera trabalhar em conjunto com pessoas de diferentes campos no futuro, para ajudá-los a compreender como seus respectivos campos deram informações para a nova pesquisa e como as novas perspectivas podem ser úteis nesses campos.
A nova pesquisa foi buscar inspiração em desenvolvimentos de ponta de diversas outras disciplinas. Alguns cosmólogos sugeriram que certas constantes fundamentais na natureza têm os valores que têm, porque senão os homens não seriam capazes de observar o universo¹. Softwares avançados podem atualmente competir com os melhores jogadores humanos no xadrez e no jogo de estratégia Go. Os  pesquisadores até buscaram inspiração no que é conhecido como teoria do nicho cognitivo, que explica como a inteligência pode se tornar um nicho ecológico e, dessa forma, influenciar a seleção natural.
A proposta requer que um sistema seja capaz de processar informação e predizer as histórias futuras muito rapidamente para que possa exibir comportamento inteligente. Wissner-Gross sugeriu que as novas descobertas se encaixam bem em uma argumentação que liga a origem da inteligência à seleção natural e a evolução darwiniana – nada além das leis da natureza é necessário para explicar a inteligência.
Embora se declare confiante nos resultados, Wissner-Gross concede que existe espaço para refinamentos, tais como incorporar princípios de física quântica ao arcabouço. Ao par disto, ele fundou uma  companhia para explorar as aplicações comerciais da pesquisa em áreas como a robótica, a economia e a área de defesa.
“Nós basicamente vemos isto como uma grande teoria unificada da inteligência”, disse Wissner-Gross. “E eu sei que isto soa impossivelmente ambicioso, talvez, no entanto isto realmente unifica várias correntes de vários campos que vão da cosmologia à ciência da computação, comportamento animal e une tudo em um belo quadro termodinâmico”.

Chris Gorski é um editor do Inside Science News Service.

[1] O tradutor acha que esses tais cosmólogos deveriam procurar um psiquiatra urgentemente…

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM