Darwin e o leite

a3a5163e3a54b8db90074c456115b7af_hEsta terça-feira, dia 12 de Novembro, Charles Darwin faria 204 anos.

Escrever sobre um dos mais importantes homens de Ciência é tão difícil como tentar desvendar a morte de Kennedy: todas as perspectivas e ângulos foram já explorados.

O tema com que lembrarei Darwin faz parte do nosso dia-a-dia: o leite. De tão familiar, nunca parámos para pensar que o seu aparecimento poderia ser visto sob a perspectiva da Biologia Evolutiva.

Como surgiu o leite?

Seria óbvio justificar o aparecimento do leite como estando ligado apenas à alimentação das crias durante a evolução dos mamíferos. Mas os percursos evolutivos nem sempre são os mais lineares.

O leite inclui lisozima, enzima com propriedades anti-bacterianas, e, assim, uma das possibilidades evolutivas para o seu aparecimento é que este fosse um antibiótico natural para os ovos dos antepassados dos mamíferos. Estes seres utilizavam essa secreção para manterem um ambiente incubador desinfectado e húmido, hipótese evolutiva actualmente mais consensual – aumentar as possibilidades de sobrevivência das crias é um trunfo essencial do jogo da Evolução.

Ao longo da história evolutiva dos mamíferos, e seus antepassados, a função higiénica do leite parece ter sido ultrapassada pela nutritiva. Darwin lamentava que o registo fóssil não apresentasse as evidências directas da lactação, mas estudos posteriores dar-lhe-iam razão.

A enorme variabilidade composicional do leite dos vários mamíferos actuais revela ainda diferentes percursos evolutivos, quer ao nível das estratégias de reprodução, quer ao nível das diferentes adaptações ambientais. Entre as espécies actuais de mamíferos a composição varia, por exemplo, entre a quase inexistência de gordura no leite dalgumas espécies de cangurus e os 60%  de gordura no das focas.

evolution of lactation

As primeiras glândulas mamárias?

Darwin referiu que as glândulas secretoras das bolsas incubadoras de alguns peixes poderiam ser as estruturas primitivas das glândulas mamárias. Antes de gozarem com a ideia pensem nas bolsas com que os cavalos-marinhos macho incubam as crias… Hoje sabemos que as glândulas mamárias evoluíram a partir de glân


Afinal, porque bebem leite os mamíferos?
dulas da pele, mais concretamente glândulas pilosas. Estas glândulas produzem secreções e estiveram na génese do leite primitivo. Darwin já havia referido a glândula mamária do ornitorrinco como forma intermédia do percurso evolutivo das glândulas mamárias – o ornitorrinco alimenta as suas crias a partir de glândulas produtoras de leite, embora estas sejam desprovidas de mamilos.

Permitir aos mamíferos uma maior independência perante as condições ambientais necessárias à sua reprodução terá sido o impulso evolutivo que conduziu ao aparecimento do leite enquanto substância nutritiva das crias.

Os antepassados dos mamíferos eram hipoteticamente endotérmicos e de pequeno tamanho. Assim, os seus ovos teriam que ter um tamanho reduzido, o que implicaria que as crias se tivessem de desenvolver mais após a eclosão, necessitando então de uma fonte de alimento como o leite.

Estas hipóteses são atestadas pelo registo fóssil de cinodontes, grupo de animais extintos e antepassados dos mamíferos de há cerca de 200 milhões de anos, que apresentavam tamanho reduzido e ovos pequenos, bem como estruturas anatómicas reveladoras de lactação – ossos epipúbicos e um tipo especial de dentição.

animal,art,conceptual,cow,got,milk,milk-d567994a914b755fgd2_hBeber leite em adulto?

À medida que os bebés crescem vão perdendo a capacidade de produzirem a enzima que degrada a lactose – o açúcar do leite. Existem populações mais intolerantes à lactose e outras que desenvolveram a capacidade de continuar a produzir aquela enzima ao longo da vida – cerca de 90% dos suecos e dinamarqueses, por exemplo. Esta mudança biológica é explicada em termos evolutivos, pela mutação no gene ligado à tolerância à lactose. Há cerca de 7000 anos, mutações da tolerância à lactose surgiram de forma independente em três populações africanas e, curioso, este processo biológico ocorreu na mesma altura do início da domesticação de gado bovino, parecendo assim ter havido um processo de convergência evolutiva entre cultura e genes.

Brindemos então à saúde de Darwin com um shot de leite!

Embora seja avesso ao culto da personalidade e me interessem mais as ideias, quero partilhar o fascínio que sinto por este homem do século XIX que influenciou o modo como nos vemos e vemos a Natureza de que fazemos parte.

Parabéns!

(texto publicado no P3)

Referências:

1 The Mammary Gland and Its Origin During Synapsid Evolution (PDF gratuito)
2 The origin and evolution of lactation (PDF gratuito)

Imagens:

A   daqui
B   Traduzida e adaptada de 2
C   daqui

O mar e as entranhas – histórias de bactérias

(Publicado no jornal O Primeiro de Janeiro a 12/07/2007)
A escuridão é total. Mas há vida.
Não poderíamos viver nestes ambientes. Mas conhecemo-los.
Ou partes dele.
O fundo do mar.
O nosso sistema digestivo.
O grande desconhecido que é o profundo marinho tem equivalências no invisível interno humano.
O PNAS*, de 5 de Julho de 2007, publicou um estudo sobre a vida microscópica, onde se relacionam os dois ambientes, com personagens que estão mais relacionadas do que até aqui se imaginava.
Quer o sistema digestivo quer o fundo do mar são ambientes inóspitos – escuros e com baixas concentrações de oxigénio.
Ainda assim estão repletos de bactérias.

Sulfurovum litthotrophicum, descrita em 1984, e Nitratiruptor tergarcus são duas espécies de bactérias do grupo ε-Proteobacteria, que habitam o fundo do mar. Sobrevivem a temperaturas comos as que temos no frigorífico lá de casa, 4º C, até aos 70º C. Vivem ambas no substrato marinho de grandes profundidades obtendo energia através da fixação de azoto provenientes de fontes hidrotermais. São consideradas das mais resistentes formas de vida, pois conseguem sobreviver naqueles ambientes adversos, onde as temperaturas podem atingir mais de 100º C, a profundidades, como no caso da fonte hidrotermal “Menez Gwen” dos Açores, de 1700 m.
Apesar da enorme resistência daquelas bactérias em ambiente natural, só recentemente foram cultivadas em laboratório permitindo que fossem estudadas mais detalhadamente.

O outro grupo de bactérias que ninguém gostaria conhecer, pelo menos na prática ocupa, com maior ou menor frequência, o nosso sistema digestivo.

A Helicobacter pylori, descoberta em 1982, está presente em metade da população mundial, sendo a causadora da inflamação da mucosa do estômago bem como das úlceras gástricas e do duodeno. A descoberta desta relação concedeu, em 2005, o prémio Nobel da Medicina a Barry Marshall e J. Robin Warren.
O minúsculo ser vivo acompanha a espécie humana desde há muito num fenómeno coevolutivo, facilitado pela sua grande variabilidade genética.
Segundo investigadores do Instituto Max Planck em Berlim, a Helibobacter tem sido transmitido de pais para filhos desde a nossa ancestral saída de África.
Reconstruindo a árvore evolutiva desta bactéria, foi possível identificar dois grandes ramos – um que infecta os europeus e norte-americanos e outro que afecta sobretudo os asiáticos. Essas duas linhagens estão associadas às migrações humanas, permitindo reconstituir essas antigas movimentações.
Outro dos géneros de bactérias patogénicas analisado foi o Campylobacter jejuni, responsável por intoxicações alimentares nomeadamente a gastroenterite. Os ambientes favoritos para a sua disseminação são leite cru ou mal pasteurizado, aves mal cozinhadas e água não tratada (líquida ou em gelo).

A equipa de investigadores procedeu à análise do ADN presente nas bactérias que partilham o nosso ambiente digestivo – Helicobacter e Campylobacter – e o das bactérias das profundezas marinhas – Sulfurovum e Nitratiruptor.
Os dois grupos de bactérias apresentaram afinidades genéticas, que lhes possibilitam viverem em ambientes hostis. Entre as semelhanças estão a quase ausência de genes de reparação do ADN. Este facto permite não só a grande adaptação destes seres vivos a novas condições extremas, mas também ao próprio sistema de defesa de um organismo hospedeiro.
Segundo os investigadores, as bactérias humanas evoluíram a partir de ancestrais de grande profundidade, adquirindo o seu “mau-feitio” quando estabeleceram relações simbióticas com invertebrados marinhos.
Não era novidade que tínhamos todos uma origem marinha.

Foi de lá que viemos.
O profundo marinho e o sistema digestivo humano partilham coincidências evolutivas.
O sistema digestivo humano serve de mar a uma variedade de fauna microscópica; sabemos agora que parte dessa fauna tem parentes próximos nos fundos marinhos.

* Proceedings of the National Academy of Sciences


Referências consultadas

-Inagaki, F. et al. 2004. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε -Proteobacteria isolated from Okinawa Trough hydrothermal sediments. International Journal of Systematic and Evolutionary Microbiology, 54, 1477-1482.
-Nakagawa, S. et al. 2007. Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens PNAS published July 5, 2007, 10.1073/pnas.0700687104.
-Nakagawa, S. et al. 2005. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the -Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. International Journal of Systematic and Evolutionary Microbiology, 55, 925

Categorias

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM