Em 1900, o matemático austríaco Georg Alexander Pick publicou um artigo de oito páginas intitulado “Geometrisches zur Zahlenlehre” [“Resultados Geométricos sobre a Teoria dos Números”]. O artigo apresentava um teorema interessante e simples, ou como dizem os matemáticos, elegante.

Pick havia encontrado uma maneira de determinar facilmente a área de um polígono simples com a ajuda de coordenadas inteiras. Esteja o polígono P em um plano reticulado — como o de um caderno quadriculado. Se i é o número de pontos reticulares (i.e., determinados pela retícula) no interior do polígono e b o número de pontos reticulares na borda do polígono, então a área, A, é dada pela seguinte fórmula:

pick's theorem

Vamos considerar o exemplo da figura a seguir.

http://commons.wikimedia.org/wiki/File:Gitterpolygon.svg

Nesta figura, temos um polígono sobre uma reticula. O polígono de bordas pretas tem seu interior preenchido com a cor amarela. Os pontos reticulares do interior do polígono (i) estão destacados em vermelho e os da borda (b) são os pontos pretos. Para encontrar a área desse polígono, basta contar os pontos e aplicar a Fórmula de Pick: A = 40 + 12/2 – 1 = 45. A unidade de área pode ficar a gosto.

No entanto, apesar de ser extremamente elegante e útil, a fórmula de Pick passou quase setenta anos esquecida. O motivo? Pick não deve tê-la considerado uma grande descoberta e publicou seu artigo na seção de matemática de uma publicação obscura de Praga, a Sitzungsber. des Deutschen Naturwissenschaftlich-Medizinischen Vereins für Böhmen “Lotos” [algo como Lótus: Anais de Ciências Naturais da Associação Médica Alemã para Bohemia]. O teorema e a fórmula de Pick só foram redescobertos e popularizados em 1969, quando o matemático polonês Hugo Dyonizy Steinhaus (1887-1972) incluiu-o numa edição do livro Mathematical Snapshots.

Outro motivo do esquecimento dessa descoberta é a própria biografia do matemático. Georg Alexander Pick foi um importante matemático em sua época. Nasceu em Viena em 10 de agosto de 1859, filho de uma família judia. Estudou na Universidade de Viena, onde defendeu seu doutorado em 1880. Em sua banca, estavam Leo Königsberger (1837-1921) e Emil Weyr (1848-1894). Mais tarde, ele foi assistente de Ernest Mach (1838-1916) na Universidade Alemã de Praga, onde se estabeleceu em 1881 e também atuou como professor. Durante um ano sabático, em 1884, ele colaborou com Felix Klein (1849-1925) na Universidade de Leipzig. Em 1911 ele fez parte do comitê que indicou Albert Einstein (1879-1955) para uma cadeira de Física-Matemática na Universidade Alemã de Praga (atual Universidade Carolina).

Pick só retornou para Viena ao se aposentar, em 1927. Mas sua velhice não teve sossego. Mesmo morando em Viena, foi eleito membro da Academia Checa de Artes e Ciências, da qual acabou expulso logo após a invasão alemã de Praga. Em março de 1938, após o Anchluss, ele retornou à capital tcheca, mas os nazistas também invadiram a Tchecoslováquia em março de 1939. Aos 82 anos, Pick foi preso e enviado para o campo de concentração de Theresienstadt em 13 de julho. Ele morreu lá, duas semanas mais tarde.

Há uma versão digitalizada do artigo original do teorema de Pick (em alemão, é claro) disponível on-line no archive.org. Se alguém precisar, a referência completa é esta:

rb2_large_gray25PICK, G. A. (1900). Geometrisches zur Zahlenlehre (Geometric results on number theory). Sitzungsber. des Deutschen Naturwissenschaftlich-Medizinischen Vereins für Böhmen “Lotos”, Prag  (2), 19, 311-319.

Related Posts Plugin for WordPress, Blogger...