5 empresas que estão utilizando a biotecnologia para mudar o mundo

Todos os dias, mais de 90 milhões de barris de petróleo são produzidos e mesmo assim este número continua a crescer. O  consumo deve chegar próximo de 100 milhões em 2020. A queima e o refino do petróleo são grandes responsáveis pela poluição, o aquecimento global e danos à saúde. Felizmente muitas empresas estão buscando alternativas renováveis e aqui vão 5 exemplos.

DuPont

A mais velha da lista, a DuPont utiliza microrganismos e açúcar de milho para produzir produtos renováveis de diferentes finalidades, desde vestuário até móveis. Um desses produtos, o Sorona® EP, é um plástico termo resistente atualmente empregado no Toyota Prius.

Toyota Prius Alpha

 

LanzaTech

Fundada em 2005 e com sede nos EUA, a LanzaTech emprega arqueobactérias que são capazes de transformar a poluição em produtos renováveis, como combustíveis, nylon e borracha.

LanzaTech

Gases poluentes ricos em carbono provenientes da indústria, como a siderúrgica, vão para um bioreator, onde os microrganismos fermentadores se encarregam de tranformá-los em etanol e outras moléculas que são utilizadas para produzir plástico, fibras sintéticas e borracha. O etanol da LanzaTech não depende de fontes de alimentos e terras aráveis, como o álcool obtido a partir do milho ou da cana-de-açúcar. Com apenas 10 anos, a empresa já possui 85 patentes e outras 250 pendentes. A primeira fábrica em escala comercial começa a operar ainda esse ano na China, e a companhia aérea Virgin Atlantic deve ser a primeira a voar com o combustível.

 

Sapphire energy

Fundada em 2007, e com três plantas na Califórnia e Novo México, a Sapphire Energy é a primeira e única empresa no mundo a utilizar algas para produzir petróleo. Seu petróleo renovável recebeu o nome de Green Crude, e não depende de água potável nem de terras aráveis. As algas capturam dióxido de carbono durante processo, o que faz o Green Crude neutro em emissões de CO2. Com investidores como Bill Gates, a família Rockfeller e a Monsanto, a empresa espera que ele seja competitivo com o petróleo fóssil já em 2018.

Sapphire

 

NatureWorks

Em média, cada pessoa no mundo irá consumir 45 kg de plástico em 2015, e apenas uma parte disso será reciclado. De olho neste mercado, a NatureWorks criou o Ingeo™, um plástico revolucionário.

Bioserine

Sua fábrica nos EUA utiliza o açúcar proveniente de plantas e leveduras para produzir ácido lático, o responsável por formar o plástico PLA (ácido polilático). Ele é capaz de substituir o PET e o PS, presentes em garrafas, talheres descartáveis e eletrônicos. Ao contrário do plástico derivado do petróleo, ele é facilmente reciclado e gera 60% menos gases do efeito estufa.

 

Amyris

Criada em 2003 e com cerca de 400 funcionários, a empresa americana emprega biologia sintética para produzir produtos químicos renováveis utilizados em cosméticos, fragrâncias, combustíveis e medicamentos.

Com apoio da fundação Bill & Melinda Gates, a Amyris desenvolveu uma levedura capaz de criar um precursor da artemisinina, o medicamente utilizado no tratamento da malária, doença que mata todos os anos mais de meio milhão de pessoas. Em 2013, a empresa farmacêutica Sanofi iniciou a produção da artemisinina utilizando essa tecnologia.

No Rio de Janeiro e em São Paulo, o combustível da empresa, o Diesel de Cana™, é utilizado diariamente por cerca de 400 ônibus. Em 2014, a GOL fez o primeiro vôo comercial com uma mistura contendo 10% de combustível renovável.

amyris (2)

 

A Revista The Economist do mês passado apontou a biotecnologia como um dos campos que mais poderão contribuir para a evolução humana no futuro. Pelo jeito algumas empresas já saíram na frente.

 

 

Mais um acidente a favor do pesquisador

Em 1986, o pesquisador Richard Jorgensen estava trabalhando com petúnias quando aconteceu um acidente. Jorgensen desejava criar uma petúnia roxa, porém muito mais roxa do que o normal. Para alterar a cor, ele procurou super-expressar a enzima chalcona-sintase (CHS) introduzindo um gene quimérico de CHS, uma enzima limitante da via responsável pela coloração das flores [1]. Mas a alteração genética realizada teve um resultado totalmente inesperado e grande parte das pétalas se tornaram brancas e não roxo escuro como ele desejava.

O mistério só foi desvendado em 1998 e conferiu o Prêmio Nobel a dois pesquisadores americanos, gerou especulações sobre a cura de dezenas de doenças e mais recentemente se tornou uma nova ferramenta para a biologia sintética. Andrew Fire e Craig Mello descobriram que Jorgensen havia esbarrado no que eles vieram a chamar de RNA de interferência (RNAi), um mecanismo de silenciamento gênico.

O gatilho para o mecanismo de silenciamento gênico por RNAi ocorre quando um RNA de dupla fita (dsRNA) se forma. Ao ser identificado um dsRNA, a enzima Dicer corta o dsRNA em fragmentos menores que se ligam ao complexo protéico RISC (RNA-induced silencing complex). Em seguida, apenas uma das fitas de RNA permanece presa ao complexo, que serve para ir em busca de fitas de mRNA que sejam complementares [2]. Quando um mRNA complementar é detectado, ocorre o pareamento com o RNA preso ao complexo e ele é então clivado e degradado. Como o mRNA não pode ser traduzido, o gene tem sua expressão reduzida (Figura 1). O silenciamento é uma poderosa ferramenta que agora encontrou uma aplicação na biologia sintética, por meio da evolução dirigida.

O sonho da biologia sintética de construir sistemas que funcionem de modo previsível e robusto frequentemente entra em conflito com a complexidade dos sistemas biológicos. Além de sua complexidade, o comportamento dos microrganismos dependem de um contexto, o que também dificulta o uso de partes padronizadas [3]. Logo, métodos de evolução dirigida possuem grande utilidade, já que em princípio dispensam informações detalhadas de estrutura, funcionalidade e de mecanismos de um sistema [4].

 

Untitled1

Figura 1: Mecanismo do RNAi – Imagem retirada de: http://pt.wikipedia.org/wiki/RNA_interferente

 

 

Um dos primeiros experimentos sobre evolução realizado em laboratório foi feito por  William Dallinger, em 1880. Dallinger conseguiu que seus microrganismos que cresciam a 18ºC passassem a crescer a 70ºC, no entanto o experimento levou 7 anos e envolveu  aumentar a temperatura de sua incubadora gradualmente até que eles fossem capazes de sobreviver. Hoje existem diversos métodos de evolução dirigida e um pouco menos demorados, entre eles o RAGE – RNAi assisted genome evolution.

RAGE é um método utilizado em Saccharomyces cerevisiae e é bastante útil quando se deseja obter fenótipos complexos. Fenótipos complexos, como a tolerância ao ácido acético, dependem da alteração de múltiplos genes e são de grande interesse para a indústria na produção de combustíveis e outros compostos químicos. O uso dessa técnica reduz a expressão de genes (knockdown) em escala genômica e possibilita identificar genes que até então não se imaginava terem papel em determinadas funções.

Para que tais genes possam ser identificados, é necessário criar uma biblioteca de RNAi. A biblioteca é criada fragmentando o DNA genômico com uma enzima de restrição e clonando os fragmentos em um plasmídeo com promotores convergentes, necessário para que RNAs de fita dupla sejam formados. Como S. cerevisiae não possui a via de RNAi, também é necessário inseri-la [6].

Via inserida e biblioteca criada o processo de evolução pode começar. Quando o knockdown de um gene for promissor, tal gene pode ser integrado e novos ciclos de transformação e screening podem ser feitos repetidamente (Figura 2), até que seu objetivo seja alcançado, ou pelo menos, chegue próximo dele.

 

Untitled

Figura 2: Evolução dirigida pelo método RAGE – Imagem retirada de: http://pubs.acs.org/doi/abs/10.1021/sb500074a

 

Em 2006, Fire e Melo ganharam o Prêmio Nobel em fisiologia ou medicina por desvendarem o fenômeno observado por Jorgensen. Muitas descobertas acidentais fazem parte da história da ciência, como a penicilina, o raio X e o microondas, por exemplo. O método de evolução dirigida utilizando RNAi pode também em breve facilitar a vida de muitos pesquisadores que buscam aprimorar seus microrganismos.

 

 

Referências

  1. NAPOLI, C.; LEMIEUX C.; JORGENSEN R. lntroduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant Cell, Vol. 2, p. 279-289.
  1. CLARK D. P. Molecular Biology. Vol. 2, chapter 11 (2010)
  1. DOUGHERTY, M. J.; ARNOLD, F. H. Directed evolution: new parts and optimized function. Current Opinion in Biotechnology, 2009, 20:1–6
  1. COBB, R. E; SUN,N.; ZHAO H. Directed evolution as a powerful synthetic biology tool. Methods (2012)
  1. SI, T.; LUOZ, Y.; BAO, Z.; ZHAO, H. RNAi-Assisted Genome Evolution in Saccharomyces cerevisiae for Complex Phenotype Engineering. ACS Synth. Biol. (2014)

 

 

Um jogo para acabar com preconceitos

Qual é a melhor maneira de passar uma informação pra uma pessoa!?

Como os comerciais, filmes e canais de televisão estão aí pra comprovar, o entretenimento passa muito mais pra você do que mera diversão. É com essa ideia que ficamos pensando em como fazer as pessoas entenderem os conceitos e finalidades da abordagem da Biologia Sintética. Como não perdemos tempo para arrumar uma desculpa para nos divertir, criamos durante esse ano um jogo de cartas – inspirado em elementos de MunchkinBohnanza, Magic e War – para, além de ensinar de uma maneira divertida sobre conceitos de microbiologia e biologia molecular, informar melhor as pessoas e acabar com certos preconceitos envolvendo microrganismos bioengenheirados.

E olha que legal: além de levarmos essa ideia como nossa Human Practices na competição internacional de máquinas geneticamente modificadas desse ano (e sermos bastante elogiados por esse trabalho), emplacamos primeiro lugar com o projeto na Olimpíada USP do Conhecimento!

primeiro lugar USP Conhecimento

É, senhora Sociedade, eu te disse que nossa brincadeira é uma brincadeira séria! Tão séria que esse projeto não para aqui.

Game Crafter

O jogo estará disponível para download (se você quiser imprimir aí na sua casa) ou para compra através do maravilhoso site “The Game Crafter“, que é de uma empresa que imprime e vende jogos independentes, como o nosso. Desse jeito nosso jogo vai poder sempre fazer o que ele se propõe a fazer: ser jogado!

O jogo

O jogo funciona assim: cada jogador (até 4) escolhe uma carta de personagem personagem, como por exemplo o professor Fujita:

Senhor Fujita

OBS: procure o “easter egg”.

Como dá pra ver, cada pesquisador tem uma personalidade específica e um chassi com que desenvolve seus projetos. No caso o senhor Fujita é um pesquisador que não colabora muito mas bastante competente, trabalhando com a largamente usada Escherichia coli.

O grande objetivo do jogo é construir primeiro que o seu colega um circuito gênico – afinal estamos falando de academia, minha gente! Para construir o circuito o jogador deve “criar”, acumular e trocar BioBricks, até que tenha a combinação de Biobricks necessários para completar o circuito, como por exemplo esse:

Carta Objetivo

OBS: nem todos os objetivos realmente podem ser feitos em alguns chassis.

Os Biobricks podem ser baixados com “pontos de metabolismo”, que é a representação dos recursos metabólicos e energéticos que o microrganismo tem para passar com sucesso pelo processo de transformação gênica de cada parte, a ser inserida sequencialmente na célula (no exemplo anterior há 8 BioBricks).

A dinâmica das cartas se dá quando elas ainda estão na sua mão e não foram “baixadas” no organismo. Há também (no melhor estilo Munchkin – quem já jogou sabe do que estou falando!) cartas dinâmicas usadas por um jogador em si mesmo ou em outros jogadores, como essa abaixo:

Carta dinâmica

E, por último, o último elemento do jogo é a tão temida aleatoriedade! Aquelas variáveis sem controle que sempre fazem seu experimento não sair como você queria. Um jogador no final da rodada joga um dado: dependendo do número tirado uma “carta aleatória” surge, ajudando ou prejudicando o ganho de pontos de metabolismo (que ocorre por rodada) dos chassis de cada pesquisador.

Cartas Aleatórias

Fizemos um overview do projeto num vídeo do youtube, dê uma olhada:


Quando o nosso novo site ficar pronto vamos ter um endereço especial com o jogo, por enquanto fica aqui nossa promessa de acesso aberto a esse conteúdo. :)

Acontece nos filmes, acontece na vida, acontece no Clube de Biologia Sintética

Este é mais um projeto que surgiu das reuniões do Clube de Biologia Sintética, feito por pessoas das mais diversas áreas e que se conheceram no clube. Esse é o objetivo principal do grupo: Reunir e ensinar pessoas de maneira divertida , integrar áreas, criar projetos científicos inovadores e criativos e, por fim, gerar impactos positivos na sociedade.

Você que compartilha dos nossos ideais, acompanhe nossas reuniões pessoalmente ou pelo ao vivo pelo streaming no nosso canal do youtube, ou ainda entre em contato pelo nosso email, canal do facebook e twitter!

Jamboré Brasil!

Jamboré

Quem diria. A um ano atrás estávamos nós fazendo vaquinha virtual pra levar o Brasil para a competição internacional de máquinas geneticamente modificadas e hoje, ainda na luta, podemos compartilhar o fardo herdado da Unicamp de representar a ciência tupiniquim no iGEM. Que lindo isso.

Mais lindo ainda é que as equipes de Manaus, Belo Horizonte e São Paulo são amiguinhas! Numa das competições mais bizarras do mundo (o iGEM) o conceito de competição também é “distorcido”: ganha mais quem colabora mais – o “distorcido” deveria ser exatamente o contrário na ciência mundial hoje em dia, mas deixa pra lá! E é por isso que nós vamos nos reunir no primeiro encontro nacional de equipes do iGEM: para trocar experiências, fazer networking, se conhecer melhor e conversar bastante sobre coisas nerds, como Biologia Sintética, é claro. Afinal, a gente faz o que a gente ama, não é mesmo!?

Enfim! Nós das equipes do Brasil, que estamos aqui na raça, na gana, na teimosia pra fazer um Brasil e, “de tabela”, um mundo melhor, abrimos esse encontro de jovens interdisciplinares e amantes de biotecnologia para todo mundo! Sim, aqui na USP, em São Paulo! É o “Jamboré”! Porque Jamboree é “nas gringa” [fora do país], aqui é Jamboré!

Local e Data

Tudo vai acontecer neste sábado, dia 17 de Agosto, no Instituto de Química, no famigerado “Queijinho” (ou, Complexo Ana Rosa Kucinski, como foi rebatizado recentemente), sala A2. Veja o mapa aqui:

Visualizar Jamboré! em um mapa maior

Cronograma

As atividades vão ser de manhã e a tarde. Atividades infinitas!

Horário Atividade
10H – 10:30H Abertura: “Biologia Sintética, iGEM e Brasil”
10:30 – 12:00 Apresentação dos projetos brasileiros no iGEM 2013
12H – 14H Almoço
14H – 15:30H Play-teste de Jogo de Cartas sobre Biologia Sintética
15:30H – 15:50H Coffee-Break
15:50H – 17H Mesa Redonda sobre a formação das equipes do iGEM no Brasil

 

Pessoas de todas as áreas são bem vindas. Aqui interdisciplinariedade (e discussões estranhas) são nossa especialidade. Não esperamos que você saiba nada de Biologia Molecular ou modelagem matemática, para qualquer dúvida nós vamos estar ali para ajudar. Ou a piorar. Depende do ponto de vista.

O evento é aberto a todos fora e dentro da comunidade USP. Então se quiser um programa nerd de qualidade esse final de semana, venha para a Cidade Universitária!

Experiência em Biologia Sintética – Monique Gasparoto

Entrevista feita por Mira Melke.

A Biologia Sintética é extremamente motivadora. Para provar isso e para mostrar o quão importante e distinta pode ser uma experiência em Biologia Sintética acima do equador convidei uma amiga, companheira dos tempo de Biomol (Ciências Físicas e Biomoleculares) para escrever um pouquinho para a gente. 

Quem fala agora é a Monique:

Monique

Biologia sintética: impossível não se apaixonar!

Minha história com a Biologia Sintética começou como toda história de amor, umas paquerinhas para cá, um google search para lá, mas nada muito sério. A primeira vez que ouvi falar da área foi em 2009, quando nem havia descrições em português. O amor adormeceu enquanto eu me desdobrava para ser aprovada em todas as disciplinas do curso de Ciências Físicas e Biomoleculares da USP de São Carlos, do qual atualmente sou aluna do último ano. Envolvi-me em outra área de pesquisa, o mundo continuou a andar, mas quando eu menos esperava fui me reencontrar com minha paixonite dos tempos de caloura.

Como bolsista do programa Ciências sem Fronteiras, passei um ano na Boston University e além da incrível experiência de intercâmbio, tive a oportunidade de trabalhar no laboratório do professor Doug Densmore (CIDAR) e fazer parte do time do iGEM da Boston University. Eu não poderia sonhar em um lugar mais incrível para me aproximar da Synbio: estar em Boston onde as primeiras bases da área foram lançadas, fazer pesquisa em um laboratório exclusivamente de Biologia Sintética – em que todo mundo tem o site do Registry nos favoritos(!), assistir a palestras e seminários dos pesquisadores referência da área, como o Jim Collins, com quem dividíamos espaço de laboratório , visitar o Headquarters do iGEM e muitos outros aspectos me fizeram ter a certeza de que a Synbio veio para ficar não só na minha vida, mas certamente na de todos os que a conhecem.

O projeto que desenvolvemos para a competição trabalhava os três pilares do iGEM: construção, caracterização e compartilhamento das informações do Registry. Para isso introduzimos na competição o método de Clonagem Modular (MoClo) descrita por Weber et al, propusemos um protocolo de caracterização padrão para circuitos com proteínas fluorescentes usando citometria de fluxo e esboçamos uma página comum a ser usada no Registry em que as  informação sobre as partes poderiam ser geradas automaticamente a partir do Clotho, uma plataforma para Biologia Sintética desenvolvida pelo meu orientador, Doug Densmore.  Mais detalhes vocês podem conferir na nossa Wiki.

Foi um período de aprendizado intenso, porque era a primeira vez que o Densmore Lab apoiava um time de WetLab, a tradição dos anos anteriores era o time de software. Éramos dois alunos de graduação orientados por três alunos de doutorado e uma pós-doc, e nunca imaginei participar de um ambiente tão colaborativo e estimulante. É claro que parte disso é devido à excelente estrutura do laboratório e às facilidades dos meios de pesquisa, quem não ficaria feliz e contente com sequenciamentos de DNA que ficam prontos no mesmo dia e enzimas que chegam ao laboratório em no máximo 48h após a encomenda!? Mas o diferencial dessa experiência veio da oportunidade de vivenciar um ambiente de apaixonados por Biologia Sintética e perceber como eles desenvolvem suas pesquisas: com muita competência, muito estudo e muita motivação!

O que mais me cativa nessa área da ciência que agrega à biologia molecular conceitos e ferramentas da engenharia é que tão importante quanto o conhecimento técnico, é a inovação e a criatividade. Características que eu pude testemunhar de perto em todos aqueles que participaram do iGEM, e que ficaram ainda mais nítidas quando na fase final da competição em Boston, times do mundo inteiro, desde do Leste Asiático até a América do Sul se reuniram para sonhar, discutir e compartilhar suas propostas para tornar o mundo melhor, “one part at a time”.

Talvez não haja outro grupo de (malucos) cientistas que acredite tanto que seus projetos e conhecimentos podem mudar o mundo. Aí está o brilho da Synbio, que uniu pesquisadores de fronteira que não queriam mais ficar confinados às suas especialidades, mas decidiram sair de sua zona de conforto e ousar e empreender em grupos multidisciplinares.  A ousadia desses biólogos sintéticos é tão grande que são capazes de investir cifrões de patrocínio e meses de trabalho em uma competição em que o grande prêmio, aos olhos dos mais céticos, é somente um BioBrick gigante. É como dizem por aí, a biologia sintética tem razões que a própria razão desconhece.

Especulações e Biologia Sintética

images (1)Minha vontade de discutir e aprender biologia, especialmente tudo aquilo que envolve a palavra DNA já me acompanha antes mesmo de entrar na faculdade. A solução que encontrei para suprir essa vontade e viagens por esse mundo, até então feitas apenas acompanhado de meu computador foi prestar uma prova de seleção para dar aulas de biologia no cursinho da UNESP.

Comecei dar aulas em 2012 e o melhor, da matéria que mais gosto, citologia e genética, afinal, eu queria falar de células, DNA, Mendel e não sobre insetos que possuem três pares de patas e um de antenas.

Certo dia, véspera de feriado e com chuva, resolvi passar um filme para discussão. O filme escolhido foi GATTACA. Ao final do filme, um aluno com os olhos arregalados que aparentavam demostrar grande interesse pelo assunto, levanta a mão e pergunta: “Esse tipo de previsão é possível?”

GATTACA trata-se de um filme hollywodiano de ficção científica, infelizmente não poderemos prever a expectativa de uma pessoa ao nascer, mesmo uma década após a conclusão do Projeto Genoma. Hoje sabemos que os organismos dependem de dois tipos de informação, uma delas é o código genético e a outra são estímulos recebidos do meio ambiente em que vivem, sobre o qual não podemos fazer previsões.

images (3)

O Projeto Genoma Humano, considerado por muitos a bola de cristal do futuro, foi cercado de promessas e esperanças da mídia e de Wall Street para o lançamento de medicamentos personalizados e previsões sobre riscos de doenças como Alzheimer e cânceres. Tal projeto prometia revolucionar a medicina, ao estilo do filme de ficção científica.

Pouco mais de dez anos já se passaram desde sua conclusão, uma batalha inciada em 1990 travada entre a iniciativa pública e a privada, que chegou ao fim depois de três bilhões de pares de bases sequenciadas e três bilhões de dólares gastos, além de uma briga entre o famoso James Watson e Craig Venter, marinheiro nas horas vagas. Para Nicholas Wade do NYT, o projeto falhou e não trouxe os benefícios tão esperados.

Embora as promessas aguardadas por muitos não chegaram, ele trouxe avanços significativos para a área da biologia. O Projeto Genoma Humano foi um projeto  interdisciplinar, contando com a participação de cientistas de diversas áreas como computação, matemática, biologia entre outras, além da colaboração de laboratórios ao redor do mundo, inclusive do Brasil. Ele contribuiu significativamente para o avanço na área de biocomputação e nas técnicas de sequenciamento de DNA, além de permitir a democratização da informação por meio do acesso gratuito ao sequenciamento humano e de diversos outros seres vivos. Genes agora não precisam mais ser estudados de forma individual, hoje dispomos de uma extensa lista de partes biológicas que tem permitido o avanço na área de biologia de sistemas, que promete revolucionar o modo de tratar doenças e o sistema de saúde conhecido atualmente.

Tal fato nos faz refletir sobre as promessas em torno da área de biologia sintética, a qual acredita-se ser capaz de solucionar muitos de nossos problemas atuais como o elevado preço do petróleo, desastres ambientais e uma população cada vez maior para se alimentar. Ao invés de manipular alguns genes de cada vez, como se tem feito a mais de três décadas, graças a descoberta das enzimas de restrição, o campo da biologia sintética vai além e tem como objetivo recodificar e redesenhar circuitos genéticos. Parece não haver limites do que podemos fazer, no entanto tais circuitos não se comportam como circuitos eletrônicos. Sistemas assim costumam ter muita interferência e comportamento imprevisivel, além de estarem sujeitos a mutações. Segundo o cientista Christopher Voigt, “A célula é uma espécie de burrito, tudo dentro dela está misturado” e sujeito a uma variedade de reações bioquímicas, tal complexidade tem limitado o tamanho dos circuitos criados. Drew Endy, um dos pioneiros do ramo, acredita que a biologia sintética só atingirá seu potencial quando os cientistas forem capaz de prever com exatidão como um circuito genético se comportará dentro de uma célula. Para isso tem-se aplicado estratégias de engenharia, como a padronização, dissociação e a abstração.

synthetic-biology

Promessas da Biologia Sintética

Outro problema enfrentado é a caracterização das partes biológicas. Embora o Registry of Standard Biological Parts possua mais de cinco mil partes disponíveis, menos da metade tem seu funcionamento confirmado. Caracterizar algumas partes biológicas pode levar anos e não gerar dados para uma publicação. Na cultura do “publique ou pereça”, o que temos é uma grande quantidade de trabalhos, porém com poucos dados reproduzíveis e úteis.

Embora o custo de sintese e sequenciamento tenham caido de forma significativa facilitando o avanço da área, não podemos negar que ainda há muitas pedras no caminho. Nosso conhecimento ainda é limitado mesmo para compreender por completo o comportamento de organismos mais simples como bactérias e fungos unicelulares. Assim como o projeto genoma a biologia sintética também está rodeada por especulação e não podemos dizer onde estaremos em dez anos. Mas uma coisa é certa, aprendemos a ler agora estamos escrevendo código genético.

Referências

  • The Promise and Perils of Synthetic BiologyJonathan B. Tucker and Raymond A. Zilinskas
  • Synthetic biology: from hype to impact – Timothy S. Gardner
  • Five hard truths for synthetic biology – Roberta Kwok
  • Initial impact of the sequencing of the human genome – Eric S. Lander
  • http://web.mit.edu/newsoffice/2012/complex-biological-circuit-1007.html

SynbioBrasil na Campus Party 2013 e no Grok Podcast!

Autores Colaboradores: Cauã Westmann e João Molino

No dia 29 de janeiro fomos convidados para participar do evento Campus Party, no Parque Anhembi, SP, “o maior acontecimento tecnológico do mundo” segundo o site (discutiremos isso mais tarde…)! Criada há 16 anos na Espanha, ela atrai anualmente geeks, nerds, empreendedores, gamers, cientistas e muitos outros grupos criativos que se reúnem para acompanhar centenas de atividades sobre Inovação, Ciência, Cultura e Entretenimento Digital. O evento tem duração de 5 dias e um espaço para acampamento que reuniu cerca de 8.000 “campuseiros” em barracas.

IMG_1215

Mesa com o Carlos Hotta e o Mateus Lopes na Campus Party – as pessoas por trás do começo do SynbioBrasil.

Nosso grupo foi convidado para participar de uma apresentação na sessão da Galileu (sim, a mesma da revista!), apresentando a Biologia Sintética de forma sucinta e comparando-a com alguns aspectos operacionais da computação, buscando aproximar o público com a área. Os palestrantes foram o professor doutor da USP Carlos Hotta (IQ-USP) e o PhD em biotecnologia Mateus Schreiner Garcez Lopes (Brasken), dois grandes ponta de lança da Biologia Sintética no Brasil que fizeram um ótimo trabalho!
Bom, a apresentação ocorreu somente às 15h45min e como chegamos bem cedo, tivemos tempo suficiente para passear por muitos stands e apresentações no local. Grandes empresas patrocinaram o evento e marcaram sua presença por ali como Microsoft, Intel, IBM, Nvidia, Petrobrás, Vivo, Sebrae entre outras. Vimos centenas de computadores tunados, temáticos (veja a foto da CPU mafiosa) e com configurações de hardware extraordinariamente potentes; impressoras 3D e alas inteiras dedicadas a gamers. Entretanto, apesar dos 76 mil metros quadrados de área disponível do Parque Anhembi e do grande montante de investimentos envolvidos, o evento deixou muito a desejar…

IMG_1126

Não, não é uma máquina de doces do Scarface. É um CPU.

Primeira grande pisada de bola: não havia uma rede de Wi-fi livre! É difícil de acreditar que um evento voltado para inovação e tecnologia não forneça conexões sem fio abertas. Pois bem, só estavam disponibilizados cabos para conectar o computador à rede, mas  em uma era na qual tablets e outros portáteis são cada vez mais comuns, a ausência do Wi-fi prejudicou bastante nossas atividade e, principalmente, cobertura do evento! O Synbio Brasil que não pôde twittar nada durante o evento em decorrência disso. #chateado

Segundo, o espaço foi subutilizado. Grandes áreas eram destinadas a computadores que ficaram vazios na maior parte do tempo ou a grandes telões que mostravam apenas as expressões faciais de jogadores que competiam no evento. Além disso, muitos dos stands apresentavam pouquíssimo conteúdo, ocupando seu espaço com arcades, video-games, pinballs e máquinas de pegar bonequinhos de pelúcia. Até um enorme espaço reservado para um sorteio de automóvel havia ali.
Por último, houve certa desorganização operacional, principalmente no que tange à mobilidade do público dentro do Parque. Havia uma divisória entre os setores que apresentava seguranças e detectores de metais totalmente necessários, mas com apenas uma passagem estreita para quem ia e vinha em sentidos opostos, gerando grandes filas desnecessárias.

IMG_1139

Pedro #chatiado por causa do wi-fi e de alguns estandes bobinhos. #GrumpyPedro

É claro que houve várias atividades legais, como a palestra do 2° homem a pisar na lua, o ex-astronauta Edwin Buzz Aldrin,  e outros eventos com temas diversos sobre tecnologia, inovação e empreendedorismo e tudo isso foi muito válido. Muitas pessoas levaram suas ideias, produtos, computadores tunados, monitores triplos, jogos e programas e se beneficiaram muito da troca de experiências com os outros participantes. Ponto positivo novamente. Além disso, é importante ressaltar que ficamos apenas um dia no local e, por isso, opinamos sobre o que vimos apenas neste período de tempo, não conseguindo fazer um review sobre o evento como um todo.

O grande ponto forte da Campus Party desse ano foi promover o contato de milhares de pessoas para trocarem informações e experiências sobre os mais diversos assuntos e esse é um caminho importante para o desenvolvimento educacional, cultural e tecnológico do país. No entanto, senti que esse diálogo tão enriquecedor foi bastante fraco quanto à relação entre o público e às empresas presentes.

Faltou algum elemento de coesão… A ideia de que os participantes seriam atraídos apenas por brindes e entretenimento eletrônico foi um grande equívoco. Lá não estavam consumidores da velha definição capitalista, mas sim, felizmente, consumidores de ideias, pessoas inquisitivas e cheias de novas perspectivas. E para atender às suas demandas a logística claramente precisa se atualizar. Mas palma, palma, não criemos caniço (Chapolin et al, 1973)! Não há evento melhor do que a Campus Party para promover essa atualização do sistema!

Desse modo, a experiência foi muito válida e esperamos estar lá novamente em 2014 com muitas novidades para ver e mostrar!

EDIT: Cheque aqui o vídeo da palestra no evento (Obrigado pelo link Mariana Fioravanti!):

GrokPodcast

grok

Recentemente, também, eu, Pedro Medeiros, e Otto Heringer pudemos ter a chance de participar do Grok Podcast. A página, sob comando de Carlos Brando e Rafael Rosa Fu, traz podcasts relacionados a tecnologia, principalmente tecnologia da informação, com podcasts nos quais profissionais explicam e discutem um determinado tópico de sua especialidade em uma série de episódios.

O termo Grok tem um significa curioso. De acordo com a própria página ele é proveniente do livro “Um estranho em uma terra estranha”, de Robert Heinlein, e que dizer “Entender algo tão completa e profundamente que o observador e o objeto observado se tornam um só”, com certeza uma sensação da qual nós, estudiosos apaixonados de um tema, adoramos estar próximos(e um termo que, a partir de agora, passo a adotar)!

Tomei notícia do GrokPodcast ainda em meados de 2012, quando pesquisava assuntos relacionados ao Arduino e, por acaso, noticiei um capítulo cujo título era “Singularidade e Biologia Sintética”, na qual dois entusiastas conversavam sobre o tema. Entrei em contato e, depois de algum tempo e algum esforço técnico, gravamos os episódios.

Estas foram mais duas ações com o objetivo de divulgar e informar, gerando material de qualidade (assim espero, haha) em língua portuguesa, tarefa na qual nós do SynbioBrasil já nos dedicamos.

Abaixo vai o link do primeiro episódio do nosso podcast!

SynbioBrasil no GrokPodcast Parte 1!

Aventuras em Biologia Sintética

Drew Endy

Eu considero os quadrinhos como uma das formas mais interessantes de se narrar uma história. São também uma ótima forma de divulgar ciência de uma maneira didática e divertida.

Drew Endy um dos pais da biologia sintética (e do Registry of Parts), juntamente com Isadora Deese (ambos do MIT) elaboraram o quadrinho Adventures in Synthetic Biology. E tem mais: o quadrinho foi publicado no website da prestigiada revista Nature.

Confira Adventures in Synthetic Biology e aprenda de maneira didática o que são biobrickPoPs, entre outros conceitos básicos.

 

Links possivelmente interessantes:

 

A biologia sintética pode tornar sua bebida mais segura? Reloaded – Parte 2

Como o Pedro disse no vídeo publicado no último post, eu vou tratar da parte um pouco mais cabeluda de se fazer um projeto: os problemas!
Nesse vídeo abaixo (que eu me esforcei para caber em quase 10 min), o meu trabalho foi explorar os outros contaminantes presentes nas bebidas “não comerciais” (ou falsificadas): o carcinogênico carbamato de etila e o cobre.

O grande e emocionante desafio dessa parte é estimar a viabilidade no projeto com base em alguns parâmetros, como preço das técnicas, acessibilidade a equipamentos, o know-how que temos e principalmente o tempo que tudo isso irá tomar até setembro (!!).

Com apenas as pesquisas que fizemos, tentei delinear informações importantes e determinantes para sabermos se o projeto é factível ou não, com base em questionamentos simples, como: “Se tivermos uma amostra com uma bebida com o máximo de contaminantes permitidos por lei, o sistema irá responder com os níveis de atividade gênica que temos!?”.

O objetivo do “produto final” não é ser um detector como um cromatógrafo, da mesma maneira que o seu computador pessoal não foi feito com o objetivo de ser um “Pensador Profundo“. A ideia aqui é explorar é criar um detector extremamente barato e descartável, sem a necessidade de se encomendar análise ou de comprar aparelhos caros. O “público alvo” da tecnologia em pesquisa é o cidadão comum. É o “Seu Antônio” da distribidora de bebidas da esquina, que quer avaliar a qualidade de um novo fornecedor; ou até mesmo a vigilância sanitária de uma cidadezinha de Minas Gerais, que quer avaliar a qualidade das chachaças de um festival regional. Imagine essas pessoas indo no supermercado mais próximo comprar um “fermento” que pode fazer essas análises.

Enfim: estamos abrindo esse projeto a ideias, sugestões e principalmente críticas. Estamos precisando daquelas pessoas que nos digam que é impossível, mas que argumentem o melhor possível suas opiniões. Ao contrário de muitos alunos de pós-graduação, nós adoramos que “falem mal” das nossas ideia de pesquisa – desde que seja pra gente! Apesar de aparentemente contraditório, é assim que os projetos se tornam tangíveis.

Assistam o vídeo para descobrirem os furos que já encontramos da proposta do primeiro vídeo e o que estamos fazendo para “tapá-los”:

Correções e Observações do Vídeo:

Empreendedorismo, Inovação e Biologia Síntetica

 

Escrito por: Mira Melke
empreendendo em biologia sintética

A princípio, traçar um paralelo entre empreendedorismo e biologia sintética pode ser um pouco complicado, principalmente se pensarmos em complexidades de projetos e na falta de investimento em pesquisa que  temos aqui no Brasil advinda da iniciativa privada.

A  visão de não investir em pesquisa e inovação está se alterando e hoje grandes empresas já olham para as universidades como fontes  de tesouros – geração de conhecimento e mão-de-obra especializada. Mas não são apenas as grandes empresas que podem se beneficiar desse crescimento da pesquisa. Universitários com boas ideias e atitudes empreendedoras estão mostrando que inovar é o primeiro grande passo para o sucesso. Com auxílio de incubadoras ou investidores muitos jovens das formações mais distintas levantam-se dos bancos das salas de aulas e laboratórios e assumem um novo posto: o de empresário.

A biologia sintética surge como uma ferramenta muito interessante para aqueles que gostam de inovar e tem boas ideias. Apesar da aparente complexidade, os processos laboratórias estão cada dia mais baratos e “automatizados” permitindo que sejam desenvolvidos processos metabólicos em organismos como se desenvolve uma linha de produção numa empresa. Saber usar a maquinaria celular (enzimas, por exemplo) ao nosso favor pode ser a diferença entre processos químicos demorados e caros ou uma síntese biológica com baixo custo, alta produtividade, pureza e rapidez.

Muitas áreas diferentes podem se beneficiar do estudo da biologia molecular de forma automatizada e muitos exemplos da aplicação de microrganismos podem ser citadas: alimentos, combustíveis, fármacos até mesmo circuitos elétricos já receberam suas contribuições dos organismos geneticamente modificados. Apesar de pensar que a biologia sintética pode transformar o mundo, podemos começar transformando nossas vidas com ideias simples mas lucrativas, como fez o grupo vencedor do iGEM de 2012 que desenvolveu um detector para carne em decomposição e como fizemos ao desenvolver o plasmídeo plug and play e como pretendemos fazer agora em 2013 com os projetos que estamos começando a desenvolver.

Para ajudar a ilustrar, vou dar um exemplo, mas sem nome de pessoas ou compostos. (rs)  O laboratório de um dos meus professores encontrou uma bactéria capaz de produzir uma substância antioxidante que acreditava-se ser produzida apenas por plantas. O custo de plantação, extração e purificação da substância é bastante alto e isso faz com que o valor de mercado dessa tal substância seja muito elevado. Identificar, isolar e manipular os genes responsáveis por essa propriedade tão única da bactéria e transferi-los para um organismo mais conhecido e manipulável, como a E.coli pode significar uma grande economia para produção, uma patente e um lucro gigantesco para aquele que conseguir produzir em um frasco num shaker quantidade similar do composto que é produzida por uma fazenda inteira.

E aí? Vamos ficar ricos com a Biologia Sintética? Não sei, mas essa já é uma boa ideia.

Sobre ScienceBlogs Brasil | Anuncie com ScienceBlogs Brasil | Política de Privacidade | Termos e Condições | Contato


ScienceBlogs por Seed Media Group. Group. ©2006-2011 Seed Media Group LLC. Todos direitos garantidos.


Páginas da Seed Media Group Seed Media Group | ScienceBlogs | SEEDMAGAZINE.COM